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Preface

Wireless system design is one of the most exciting fields in electrical engineering
today. In economic terms, wireless applications that include cellular and PCS telephony,
wireless local area networks (WLANs), global positioning satellite (GPS) service, direct
broadcast television service (DBS), local multipoint distribution systems (LMDS), and radio
frequency identification systems (RFID) constitute a yearly market in excess of $100B,
and strong growth is predicted over the long term. From a technical perspective, wireless
system design involves a close integration of a variety of topics that include antennas and
propagation effects, RF and microwave circuit design, noise and intermodulation effects,
digital modulation methods, and digital signal processing.

The purpose of this text is to present a cohesive overview of the fundamental subjects
required for the design and analysis of the RF stages of modern wireless systems, including
antennas, propagation, fading, noise, receiver design, modulation methods, and bit error
rates. Material is also included on the design of key components used in wireless systems,
such as filters, amplifiers, mixers, oscillators, and phase-locked loops. Major wireless ap-
plications, such as cellular and PCS telephony, GPS, DBS, WLANs, and LMDS systems
are described, and many design examples are given in the context of these systems. Re-
quired fundamentals on transmission lines, S parameters, impedance matching, and random
processes are also included.

A key premise of this book is that a coherent understanding of wireless system per-
formance and design can only be obtained by treating the relevant technical topics in an
integrated manner. A collection of individual courses in antennas, microwave engineering,
and communications engineering is unlikely to provide an understanding of the interplay
between different stages and their effect on the overall performance of the system. Courses
in antennas or microwave engineering, for example, generally will not discuss the effect
of noise or Rayleigh fading on bit error rates in a digital radio. Similarly, a course in com-
munications theory will probably not discuss component noise figure and intermodulation
requirements for different modulation schemes and data rates. While the emphasis of this
book is on the RF and microwave stages of wireless systems, we have included a chapter
on modulation methods because this allows us to provide a complete characterization of a
wireless system from an input data stream through the transmitter, the antennas and propa-
gation channel, and the receiver, resulting in overall system performance measures in terms
of bit error rate, data rate, or range.

There is enough material here for a full year course in RF and microwave design
of wireless systems at the senior or first-year graduate student level. Prerequisites ideally
would include junior-level electronics, electromagnetics, transmission lines, probability, and
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Preface

random variables, but Chapters 2—4 contain brief but reasonably complete reviews of these
topics to the extent that they will be required later in the text. If students have a familiarity
with transmission lines, S parameters, and RF circuit design, a one-semester course covering
Chapters 1, 3, 4, 9. and 10 can be presented with a focus on wireless system analysis and
design. Some teachers may prefer to cover the systems-oriented material in Chapters 1-4
and 9-10 first, followed by selective coverage of component design in Chapters 5-8. Other
combinations are possible, depending on the background of the students and the opinions
of the instructor. Much of the material on microwave circuit design presented in Chapters
2.5. 6, and 7 was drawn from my text Microwave Engineering, with additional topics
that include ceramic bandpass filters, stability, power amplifiers, FET mixers, and nonlinear
mixer analysis,

Computer codes relevant to some of the problems and examples in the text are available
on the Wiley Web site at www.wiley.com/college/pozar. These can be used for computing
the complementary error function, calculating the noise figure and intermodulation point of
a cascade system, determining the stability parameters of a transistor amplifier, and other
applications.
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Introduction to Wireless Systems

In the early 1980s a marketing firm hired by AT&T to survey the potential U.S. market for
its newly inaugurated cellular phone service arrived at an estimate of less than 900,000 users
by the year 2000. Like many predictions of technological progress, this one turned out to be off
by a wide margin—in 1998 the number of cellular subscribers in the United States was over
60 million (already an error of more than 6000 percent). It is now estimated that half of all
business and personal communications will be wireless by the year 2010 [1]. Rapid growth is
also occurring with other wireless systems, such as Direct Broadcast Satellite (DBS) television
service, Wireless Local Area Networks (WLANS), paging systems, Global Positioning Satellite
(GPS) service, and Radio Frequency Identification (RFID) systems. It is estimated that the
number of consumer wireless devices will exceed 300 million by the year 2000 [2]-[3]. These
systems promise to provide, for the first time in history, worldwide connectivity for voice, video,
and data communications. The successes of wireless technology to date, and the technological
challenges of future wireless systems, make this an exciting and rewarding field in which to
work.

In this book we study the operation and design of wireless systems from the perspective of
the radio frequency (RF) or microwave subsystems. These include modulators and frequency
up-conversion circuits in the wireless transmitter, the transmit and receive antennas, the wire-
less propagation channel, and the frequency down-conversion and demodulator circuits in the
wireless receiver. Generally these subsystems are analog in nature, even if the wireless system
uses digital modulation techniques. We will see that noise and other characteristics of these sub-
systems set the ultimate limits on the performance of a wireless system, in terms of maximum
data rate, operating range, power requirements, and error rates.



2 Chapter 1: Introduction to Wireless Systems

1.1 WIRELESS SYSTEMS AND MARKETS

In this section we give a brief introduction to some of the major wireless systems in
use today. These include wireless cellular and PCS telephone systems, commercial satellite
systems, wireless data networks, point-to-point radios, the global positioning system, and
other wireless systems.

Classification of Wireless Systems

In the broadest sense, a wireless system allows the communication of information
between two points without the use of a wired connection. This may be accomplished using
sonic, infrared, optical, or radio frequency energy. While early television remote controllers
used ultrasonic signals, very low data rates and poor immunity to interference make such
systems a poor choice for modern applications. Infrared signals can provide moderate data
rates, but the fact that infrared radiation is easily blocked by even small obstructions limits
their use to short-range indoor applications such as remote controllers and local area data
links. Similarly, optical signals propagating in an unobstructed environment can provide
moderate to high data rates, but require a line-of-sight path, and cannot be used where
foliage, fog, or dust can block the signal. For these reasons, most modern wireless systems
rely on RF or microwave signals, usual ly in the UHF (100 MHz) to millimeter wave (30GHz)
frequency range. Because of spectrum crowding, and the need for higher data rates, the trend
is to use the higher frequencies in this range. so that the majority of wireless systems today
operate at frequencies ranging from about 800 MHz to a few gigahertz. RF and microwave
signals offer wide bandwidths, and have the added advantage of being able to penetrate fog,
dust, foliage, and even buildings and vehicles to some extent.

Historically, wireless communication using RF energy began with the theoretical work
of Maxwell, followed by the experimental verification by Hertz of electromagnetic wave
propagation, during the period from 1873 to [891. Marconi built on this work to develop
practical commercial radio communications systems in the early part of the 20th century.
It is interesting to note that the term “wireless™ dates back to this early period, and al-
though replaced by the word “radio” for most of this century, wireless is again the preferred
description for most of today’s cellular telephone, data links, and satellite systems.

One way to categorize wireless systems is according to the nature and placement of
the users. In a poini-to-point radio system a single transmitter communicates with a single
receiver. Such systems generally use high-gain antennas in fixed positions to maximize
received power and minimize interference with other radios that may be operating nearby
in the same frequency range. Point-to-point radios are generally used for dedicated data
communications by utility companies and for connection of cellular phone sites to a central
switching office. Point-to-multipoint systems connect a central station to a large number
of possible receivers. The most common examples are commercial AM and FM broadcast
radio and broadcast television, where a central transmitter uses an antenna with a broad
beam to reach many listeners and viewers. Broadcast radio is similar in function to local
mudtipoint distribution systems ( LMDS), which are presentl ¥y being deployed in urban areas
to provide wireless television and Internet access to users within a small geographical
area. Another example of a point-to-multipoint system is paging, where a central station
can briefly communicate with many users over a large geographical region, Multipoint-
lo-multipoint systems allow simultaneous communication between individual users (who
may not be in fixed locations). Such systems generally do not connect two users directly
to each other, but instead rely on a grid of base stations to connect an individual user to a
central switching office, which then connects to the base station of the other user. Cellular

\



1.1 Wireless Systems and Markets 3

telephone systems and some types of wireless local area networks (WLANs) are examples
of this type of application.

Another way to characterize wireless systems is in terms of the directionality of com-
munication. In a simplex system, communication occurs only in one direction, from the
transmitter to the receiver. Examples of simplex systems include broadcast radio and tele-
vision. In a half-duplex system, communication may occur in two directions, but not si-
multaneously. Early mobile radios and citizens band radio are examples of duplex systems,
and generally rely on a “push-to-talk” function so that a single channel can be used for
both transmitting and receiving at different intervals. Some wireless data links also use
half-duplex transmission. Full-duplex systems allow simultaneous two-way transmission
and reception. Examples include cellular telephone and point-to-point radio systems. Full-
duplex transmission clearly requires a duplexing technique to avoid interference between
transmitted and received signals. This can be done by using separate frequency bands for
transmit and receive ( frequency division duplexing, FDD), or by allowing users to transmit
and receive only in certain predefined time intervals (time division duplexing, TDD).

While most wireless systems are ground based, there is increasing interest in the de-
velopment of satellite systems for voice, video, and data communications. Satellite systems
offer the possibility of communication with a large number of users over wide areas, perhaps
including the entire planet. Satellites in a geosynchronous earth orbit (GEO) are positioned
approximately 36,000 km above the Earth, and remain in a fixed position relative to the
surface. Such satellites are useful for point-to-point radio links between widely separated
stations, and are commonly used for television and data communications throughout the
world. At one time transcontinental telephone service relied heavily on such satellites, but
undersea fiber optic cables have largely replaced satellites for transoceanic connections as
being more economical, and avoiding the annoying delay caused by the very long round
trip path between the satellite and the Earth. Another drawback of GEO satellites is that
their high altitude greatly reduces the received signal strength, making it impractical for
two-way communication with small transceivers. Low earth orbit (LEO) satellites orbit
much closer to the Earth, typically in the range of 500 to 2000 km. The shorter path length
allows communication between LEO satellites and handheld radios, but satellites in LEO
orbits are visible from a given point on the ground for only a short time, typically from a
few minutes to perhaps 20 minutes. Effective coverage therefore requires a large number
of satellites in different orbital planes.

Finally, wireless systems can be grouped according to their operating frequency. The
choice of operating frequency will be discussed in much more detail in a later section, but
Table 1.1 lists the operating frequencies of some of the most common wireless systems.

Cellular Telephone Systems

Cellular telephone systems were proposed in the 1970s in response to the problem of
providing mobile radio service to a large number of users in urban areas. Early mobile
radio systems could handle only a very limited number of users due to inefficient use of
the radio spectrum and interference between users. In 1976, for example, the entire mobile
phone system in New York City could support only 543 users [ 1], The cellular radio concept
introduced by Bell Laboratories solved this problem by dividing a geographical area into
non-overlapping hexagonal cells, where each cell has its own transmitter and receiver (base
station) to communicate with the mobile users operating in that cell. Each cell site may
allow as many as several hundred users to simultaneously communicate with other mobile
users, or through the land-based telephone system.

The first cellular telephone system to offer commercial service was built by the Nippon
Telephone and Telegraph company (NTT), and became operational in Japan in 1979 [4].
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TABLE 1.1 Wireless System Frequencies

Wireless System Operating Frequency
Advanced Mobile T: 824-849 MHz
Phone Service (AMPS) R: 869-894 MHz
Global System Mobile T: 880-915 MHz
(European GSM) R: 925-960 MHz
Personal Communications T: 1710-1785 MHz
Services (PCS) R: 1805-1880 MHz
US Paging 931-932 MHz
Global Positioning L1: 157542 MHz
Satellite (GPS) L2:1227.60 MHz
Direct Broadcast Satellite (DBS) 11.7-12.5 GHz
Wireless Local Area Networks (WLANs) 902-928 MHz

2.400-2.484 GHz
5.725-5.850 GHz

Local Multipoint Distribution Service (LMDS) 28 GHz

US Industrial, Medical, and Scientific bands (ISM) 902-928 MHz
2.400-2.484 GHz
5.725-5.850 GHz

T/R = mobile unit transmit/receive frequency.

This was followed by the Nordic Mobile Telephone (NMT) system in Europe, which began
operation in 1981. The first cellular telephone system in the United States was the Advanced
Mobile Phone System (AMPS), deployed by AT&T in 1983. All of these systems use analog
FM modulation and divide their allocated frequency bands into several hundred channels.
each of which can support an individual telephone conversation. These early systems grew
slowly at first, because of the initial costs of developing an infrastructure of base stations
and the initial expense of handsets, but by the 1990s growth became phenomenal.

In 1998 there were 64 million cellular phone subscribers and over 57.000 base sta-
tions in the United States, generating annual service revenues of $30 billion with a market
penetration of about 35%. Worldwide there were about 200 million cellular subscribers in
1997. While the approximately 700 million wired telephone lines far outnumber wireless
telephone users, the growth rate of wireless is about 15 times that for wired lines.

In 1996 88% of all cellular telephones in the United States used the analog AMPS
system, but newer digital standards have been growing in popularity and will soon replace
the AMPS system. These systems are generally referred to as Second Generation Cellular.
or Personal Communication Svstems (PCS). Third generation PCS systems, which may
include capabilities for email and Internet access, are in the planning stages.




1.1 Wireless Systems and Markets 5

TABLE 1.2 Major Worldwide Cellular and PCS Telephone Systems

Year of Frequency Channel
Standard Country Introduction Type Band (MHz) Maodulation Bandwidth
NTT Japan 1979 Cellular 860-940 FM 25 kHz
NMT-450 Europe 1981 Cellular 453468 FM 25 kHz
AMPS United States 1983 Cellular 824-894 FM 30 kHz
E-TACS Europe 1985 Cellular 872-950 FM 25 kHz
C-450 Germany 1985 Cellular 450466 FM 20 kHz
NMT-900 Europe 1986 Cellular 890-960 FM 12.5 kHz
ITACS Japan 1988 Cellular 860925 M 25 kHz
GSM Europe 1990 PCS 890-960 GMSK 200 kHz
18-54 United States 1991 PCS §24-8094 DQPSK 30 kHz
NAMPS United States 1992 Cellular 824-894 FM 10 kHz
18-95 United States 1993 PCS 824-894 QPSK 1.25 MHz
PDC Japan 1993 Cellular 810-1513 DQPSK 25 kHz
NTACS Japan 1993 Cellular 843-922 FM 12.5 kHz

Personal Communications Systems

Because of the rapidly growing consumer demand for wireless telephone service, as
well as advances in wireless technology, several second generation standards have been
proposed forimproved service in the United States, Europe, and Japan. These PCS standards
all employ digital modulation methods and provide better quality service and more efficient
use of the radio spectrum than analog systems. Digital systems also provide more security,
preventing eavesdropping through the possible use of encryption.

PCS systems in the United States use either the 1S-136 time division multiple ac-
cess (TDMA) standard, the 1S-95 code division multiple access (CDMA) standard, or the
European Global System Mobile (GSM) system [1], [2], [4]. Many of the new PCS systems
have been deployed using the same frequency bands as the AMPS system. This approach
takes advantage of existing infrastructure, and facilitates the use of dual-mode handsets that
can operate on both the older AMPS system as well as one of the newer digital PCS systems.
Additional spectrum has also been allocated by the Federal Communications Commission
(FCC) around 1.8 GHz, and some of the newer PCS systems use this frequency band.

Outside the United States, the Global System Mobile (GSM) TDMA system is the
most widespread, being used in over 100 countries [1]. The uniformity of a single wireless
telephone standard throughout Europe and much of Asia allows travelers to use a single
handset throughout these regions. In contrast, the different PCS systems in the United States
are incompatible. Table 1.2 lists the major cellular and PCS telephone systems that have
been deployed throughout the world [1]. [4].

Itis interesting to compare how the development of first and second generation cellular
services has differed in the United States and Europe [1]. The first U.S. cellular system,
AMPS, provided a single standard allowing every cellular user in the United States and
Canada to communicate within range of a base station. In the Europe of the early 1980s.
however, individual countries developed their own analog cellular standards with different
frequency bands and modulation methods, so that there were at least four incompatible
systems in use (see Table 1.2). These situations were reversed for second generation digital
systems. The organization of European countries under the European Union in the 1980s
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led to the establishment of GSM as a single digital PCS standard, which is now used by over
100 countries in Europe and elsewhere. In the United States, however, government policies
relating to the allocation of radio spectrum, as well as the structure of the telecommunications
industry and the competitive nature of R&D in the United States, has allowed the technolog-
ical and economic trade-offs between CDMA, TDMA, and GSM PCS systems to be decided
in the marketplace. Meanwhile. wireless telephone consumers in the United States are left to
choose between an out-of-date analog system and a variety of incompatible digital systems.

Satellite Systems for Wireless Voice and Data

The key advantage of satellite systems is that a relatively small number of satellites
can provide coverage to wireless users at any location, including the oceans, deserts, and
mountains—areas for which it would otherwise be difficult to provide service. In principle,
as few as three geosynchronous satellites can provide complete global coverage, but (as we
will see in Chapter 4) the very high altitude of the geosynchronous orbit makes it difficult
to communicate with handheld terminals because of very low signal strength. Satellites in
lower orbits can provide usable levels of signal power, but many more satellites are then
needed to provide global coverage.

There are a large number of commercial satellite systems either currently in use, or
in the development stage, for wireless communications. These systems generally operate
at frequencies above | GHz because of available spectrum, the possibility of high data
rates, and the fact that such frequencies easily pass through the atmosphere and ionosphere.
GEO satellite systems, such as INMARSAT and MSAT, provide voice and low-data rate
communications to users with 12" to 18" antennas. These systems are often referred to as
very small aperture rerminals (VSATS), and in 1997 were being deployed at the rate of
about 1500 per month to business users [1]. Other satellite systems operate in medium or
low-earth orbits to provide mobile telephone and data service to users on a worldwide basis.

Iridium, financed by a consortium of companies headed by Motorola, was the first
commercial satellite system to offer handheld wireless telephone service. It consisted of
66 LEO satellites in near-polar orbits, and connects mobile phone and paging subscribers
to the public telephone system through a series of intersatellite relay links and land-based
gateway terminals. The Iridium system cost was approximately $3.4 B, and it began service
in 1998. Globalstar, proposed by Loral and Qualcomm, is another LEO satellite system
intended for wireless telephone, fax, and paging. This system uses 48 satellites to provide
global coverage, and became operational in 2000. One drawback of using satellites for
telephone service is that weak signal levels require a line-of-sight path from the mobile user
to the satellite. This means that satellite telephones generally cannot be used in buildings,
automobiles, or even in many wooded or urban areas (the topics of propagation, fading, and
link loss, which relate to this problem, will be studied in Chapter 4). This places satellite r
phone service at a definite performance disadvantage relative to land-based cellular and
PCS wireless phone service. But an even greater problem with satellite phone service is
the expense of deploying and maintaining a large fleet of LEO satellites, making it very
difficult to compete economically with land-based cellular or PCS service. The typical cost
of a cellular or PCS call is in the range of $0.10 to $0.20 per minute, while in 1999 the
estimated cost of a call placed through the Iridium or Globalstar satellite was about $2.00
per minute. In addition, the cost of a cellular or PCS handset to new subscribers is usually I
minimal (or zero), while the cost of a satellite handset is several thousand dollars. For
these reasons, it is hard to see how satellite telephone service can compete with land-based
cellular and PCS systems in terms of either performance or cost, even though satellite
systems offer (in principle) the convenience of a single phone that can be used anywhere
in the world. Table 1.3 summarizes some of the current commercial voice-communication
satellite systems.

=
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TABLE 1.3  Commercial Wireless Satellite Systems

Number of Operational

System Organization Satellites Orbit Date
INMARSAT-M Inmarsat 5 GEO 1996
MSAT AMSC, TMI 2 GEO
Iridium Motorola 66 LEO 1998
Globalstar Loral, Qualcomm 48 LEO 2000
1CO Global Hughes 10 MEO 2000
Odyssey TRW 12 MEO 2000

In August 1999 both Iridium LLC and the ICO Global Communications companies
declared bankruptcy. It remains to be seen whether Globalstar and the other large LEO
systems will be financially viable, but the future of such satellite services does not look
promising when land-based systems offer better performance at lower costs. A satellite
from the Globalstar system is shown in Figure 1.1.

Global Positioning Satellite System

The Global Positioning Satellite system (GPS) uses 24 satellites in medium earth orbits
to provide accurate position information (latitude, longitude, and elevation) to users on land,
in the air, or at sea. Originally developed as the NAVSTAR system by the military, at a cost
of about $12B, GPS has quickly become one of the most pervasive applications of wireless
technology for consumers and businesses throughout the world. Today, GPS receivers can be

FIGURE 1.1 Anartist's conception of one of the satellites used in the Globalstar satellite telephone

system. (Courtesy of F. Dietrich, Globalstar, San Diego, CA.)
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FIGURE 1.2 Photograph of a NAVSTAR global positioning system satellite, showing the solar
panels and the L-band helix transmitting antennas. (Courtesy of Satellite and Space
Division, Rockwell International, Seal Beach, CA.)

found on commercial and private airplanes. boats and ships, and ground vehicles. Advances
in technology have led to substantial reductions in size and cost, so that small handheld GPS
receivers can be used by hikers and sportsmen. With differential GPS, accuracies on the
order of 1 em can be achieved—a capability that has revolutionized the surveying industry
[5]. A photograph of a NAVSTAR GPS satellite is shown in Figure 1.2.

The GPS positioning system operates by using triangulation with a minimum of four
satellites. GPS satellites are in orbits 20,200 km above the Earth, with orbital periods of
12 hours. Distances from the user’s receiver to these satellites are found by timing the
propagation delay between the satellites and the receiver. The positions of the satellites
(ephemeris) are known to very high accuracy; in addition, each satellite contains an ex-
tremely accurate clock to provide a unique set of timing pulses. A GPS receiver decodes
this timing information and performs the necessary calculations in order to find the position
and velocity of the receiver. The GPS receiver must have a line-of-sight view to at least four
satellites in the GPS constellation, although three satellites are adequate if altitude position
is known (as in the case of ships at sea). Because of the low gain antennas required for
operation, the received signal level from a GPS satellite is very low—typically on the order
of —130 dBm (for a receiver antenna gain of (0 dB). This signal level is usually below the
noise power at the receiver, but spread spectrum techniques are used to improve the received
signal-to-noise ratio,

GPS operates at two {requency bands: L1, at 1575.42 MHz; and L2, at 1227.60 MHz,
transmitting spread spectrum signals with binary phase shift keying modulation. The L1
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frequency is used to transmit ephemeris data for each satellite, as well as timing codes,
which are available to any commercial or public user. This mode of operation is referred to
as the Course/Acquisition (C/A) code. In contrast, the L2 frequency is reserved for military
use and uses an encrypted timing code referred to as the Protected (P) code (there is also a P
code signal transmitted at the L1 frequency). The P code offers much higher accuracy than
the C/A code, and it is likely that this capability will soon be made available to all users.

The typical accuracy that can be achieved with an L1 GPS receiver is about 100 fi.
Accuracy is limited by timing errors in the clocks on the satellites and the receiver, as well
as some error in the assumed position of the GPS satellites. The most significant error is
generally caused by atmospheric and ionospheric effects, which introduce small but variable
delays in signal propagation from the satellite to the receiver. Much better accuracies can
be obtained through the use of differential GPS, which uses a GPS receiver at a known
location to provide error correction information to other nearby GPS receivers. In this way,
positioning accuracies to within 1 cm can be obtained relative to the reference position,
Receivers that have access to the P code can use the encrypted timing data at the L1 and L2
frequencies to correct for the atmospheric and ionospheric propagation delays, and thereby
yield very accurate position information,

Wireless Local Area Networks

Wireless local area networks (WLANS) provide connections between computers over
short distances. Typical indoor applications may be in hospitals, office buildings, and fac-
tories, where coverage distances are usually less than a few hundred feet. Outdoors, in the
absence of obstructions and with the use of high gain antennas, ranges up to a few miles can
be obtained. Wireless networks are especially useful when it is impossible or prohibitively
expensive to place wiring in or between buildings, or when only temporary access is needed
between computers. Mobile computers users, of course, can only be connected to a computer
network by a wireless link.

In spite of their attractiveness, market penetration of WLAN products has been slow,
probably due to a combination of factors that include relatively high costs, relatively slow
data rates, and poor immunity to fading and interference. In 1996 the market for WLANs
was about $200M, which is a negligible fraction of the several billion dollar cellular tele-
phone industry. It is expected, however, that market growth for WLANs will soon increase
substantially. A major new WLAN initiative is the Bluetooth standard, where very small
and inexpensive RF transceivers will be used to link a wide variety of digital systems over
relatively short distances. Possible Bluetooth applications include wirelessly networking
printers, scanners, cell phones, notebook and desktop computers, personal digital assistants
(PDAs), and even household appliances. Current Bluetooth systems operate in the ISM band
at 2.4 GHz, and offer data rates up to 1 Mbps. Market projections for Bluetooth devices are
in the range of several hundred million units per year.

Currently most commercial WLAN products in the United States operate in the In-
dustrial, Scientific, and Medical (ISM) frequency bands, and use either frequency-hopping
or direct-sequence spread spectrum techniques in accordance with IEEE Standard 802.11.
Maximum bit rates range from 1 to 2 Mbps, which are much slower than the data rates that
can be achieved with wired Ethernet lines. WLANSs almost universally use Internet proto-
cols (TCP/IP) for communication between computers. In Europe, the HIPERLAN standard
provides for WLAN operation with data rates up to 20 Mbps.

Other Wireless Systems

Besides the wireless systems described above, there are many other applications of
wireless technology. Wireless local loop (WLL) is similar to a cellular telephone system,
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but provides service over a smaller operating area. Hospitals, college campuses, factories,
and office buildings can employ a WLL as a private branch exchange (PBX) to provide users
with a single telephone number and a mobile handset with which they can communicate
from any point within the operating area. The cell sizes for WLL typically range from 50
to 100 ft, and for this reason WLL is sometimes referred to as microcellular phone service.
An interesting application of WLLSs is to provide service for towns and villages in lesser
developed countries that do not have wired telephone service, since installing a wireless
local loop system is much more economical than installing hard-wired copper lines. For
these reasons, the demand for WLL products is expected to grow rapidly in the next few
years, with over 60 million WLL users predicted by the year 2000.

The Direct Broadcast Satellite (DBS) system provides television service from two
geosynchronous satellites directly to home users with a relatively small 18" diameter an-
tenna. Previous to this development satellite TV service required an unsightly dish antenna
as large as 6 ft in diameter. As we will see in Chapters 4 and 9, this advancement was made
possible through the use of digital modulation techniques, which reduce the necessary re-
ceived signal levels as compared to previous systems, which used analog modulation. The
DBS system uses quadrature phase shift keying (QPSK) with digital multiplexing and error
correction to deliver digital data at a rate of 40 Mbps. Two satellites, DBS-1 and DBS-2,
located at 101.2° and 100.8” longitude, each provide 16 channels with 120 W of radiated
power per channel. These satellites use opposite circular polarizations to minimize loss due
to precipitation, and to avoid interference with each other (polarization duplexing), DBS-1
transmits with left-hand circular polarization (LHCP), while DBS-2 uses right-hand circular
polarization (RHCP),

DBS competes directly with wired cable TV service, but within one year of its intro-
duction in 1994, DBS sold over | million units to break all previous records and become the
consumer electronics product with the fastest market growth in history. The initial cost of a
DBS antenna and receiver was about $700, but after 2.5 million units were sold the price had
dropped to about half this value. This cost reduction was the result of market competition,
as well as significant economies of scale associated with large volume production rates
(hundreds of thousands per month).

Local Multipoint Distribution Systems (LMDS) and Multipoint Multichannel Distribu-
tion Systems (MMDS) provide broadband wireless connections between a fixed base station
and a cellular region of users. These systems are poised for rapid market growth because of
the strong demand for the ‘last mile connectivity', where wireless systems offer one of the
few economical solutions to the problem of providing high data rate connections to small
businesses and homes for Internet access. telephone, television, and data communications,
LMDS and MMDS systems typically operate in the 2.1-2.7 GHz band, the 3.4-3.7 GHz
band, or the 28 GHz millimeter wave band. and may offer two-way full-duplex data rates
ranging from 50 Mbps to over 110 Mbps for each channel. These systems are sometimes
referred to as broadband fixed wireless. because they are intended for connections bet-
ween fixed, as opposed to mobile, users. Figure 1.3 shows a commercial MMDS subscriber
system.

Point-to-point radios are used by businesses to provide dedicated data connections
between two points. Electric utility companies use point-to-point radios for the transmission
of telemetry information for the generation, transmission, and distribution of electric power
between power stations and substations. Point-to-point radios are also used to connect
cellular base stations to the public switched telephone network, and are generally much
cheaper than running high-bandwidth coaxial or fiber-optic lines below ground. Such radios
usually operate in the 18, 24, or 38 GHz bands. and use a variety of digital modulation
methaods to provide data rates in excess of 10 Mbps. High gain antennas are typically used
to minimize power requirements and avoid interference with other users.
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FIGURE 1.3 Photograph of the subscriber antenna and outdoor unit of an MMDS system operating

1.2

4t 2.4-2.6 GHz, providing a data rate of 20 Mb/sec. (Courtesy of N. Herscovici, Spike
Technologies, Nashua, NH.)

Radio frequency identification (RFID) systems are used for inventory tracking, ship-
ping. toll collection, personal security access, and other functions. Most express delivery
services, for example, use handheld terminals that scan bar codes on packages and relay in-
formation to a central station. As another example, available now in several cities, automatic
toll collection (ATC) uses a small transponder in an automobile that can be interrogated by
an RF system mounted at the entrance to a highway or bridge. The transponder provides
the vehicle's account number, which is then debited. and a monthly bill sent to the driver.
RFID systems are much more specialized than cellular or WLAN systems. and use a wide
range of modulation methods, operating frequencies. and duplexing schemes. It is expected
that the market for RFID systems will reach $1.5 B by the year 2000.

DESIGN AND PERFORMANCE ISSUES

In this section we discuss general considerations related to the design and performance
of wireless systems. These include the choice of RF frequency, duplexing and multiple
access methods, and a brief mention of some of the problems associated with propagation
through the wireless channel. We will also discuss the differences between communication
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using a circuit-switched and a packet-switched system, and possible health hazards associ-
ated with radiated RF power.

Choice of Operating Frequency

One of the first decisions that must be made during the design of a wireless system is the
operating frequency. The choice of a transmit or receive frequency is never completely free,
as only small sections of the RF spectrum are available for specific applications. As listed in
Appendix A, large portions of the spectrum are allocated to AM radio (550 kHz-1.6 MHz).
FM radio (88—106 MHz), broadcast TV (54-88 MHz and 174-806 MHz), and a multitude
of radio channels for airport, police, fire, CB, amateur, and other users. In the United States,
the Federal Communications Commission (FCC) is responsible for assigning frequency
spectrum to competing users. As listed previously in Table 1.1, frequency bands have been
reserved for cellular and PCS telephone systems, GPS, DBS, point-to-point radios, and other
major wireless applications. An important category is the Industrial, Scientific, and Medical
(ISM) bands, which reserve three microwave frequency bands for a variety of uses not
covered under other spectrum allocations. The ISM bands are used for WLANs, microwave
ovens, RFID systems, and medical treatments using microwave power. For this reason,
systems operating in the [SM bands are limited to a maximum of 1| W of radiated power.

Besides the availability of spectrum, other important factors influenced by the choice
of operating frequency include noise, antenna gain, bandwidth, and cost. Noise power,
for example, increases sharply at frequencies below 100 MHz due to a variety of sources
that include lightning, ionospheric ducting, and interference from engine ignitions and other
electrical equipment. At frequencies above 10 GHz, however, noise power steadily increases
due to thermal noise of the atmosphere and interstellar radiation. Noise sources and noise
effects are discussed in further detail in Chapters 3 and 4.

As we will see in Chapter 4, the gain of an antenna increases with frequency, for a fixed
antenna size. Thus the use of higher frequencies is an advantage for point-to-point wireless
systems where high antenna gain is required, as the resulting antenna will be smaller and
less obtrusive. Higher gain antennas also receive less noise power from the surrounding
environment,

In Chapter 9 we will see that the maximum data rate of a communications channel
is determined by the available bandwidth, when noise is present. Thus a wireless system
capable of high data rates will require a correspondingly high RF bandwidth, and this is
easier to obtain at high frequencies than at low frequencies. For example, for a modulation
method having a spectral efficiency of 1 bit per second per Hertz, a 1 Mbps data rate requires
1 MHz of bandwidth. This bandwidth could be obtained with a [requency band from 100 to
101 MHz, or from 10.000 to 10.001 GHz—the lower frequency band requires 1% fractional
bandwidth, while the higher frequency band requires only 0.01% fractional bandwidth. |

While most of the preceding considerations argue for the use of a high operating
frequency. there are points working in favor of lower frequencies as well. One is that the
efficiency of RF transistors decreases with frequency, which increases the prime power
required to operate wireless transmitters and receivers. This is especially true at millimeter
wave frequencies, where active device efficiencies can be as low as 30%. In addition,
component cost generally increases with operating frequency, so it is much more economical
to build an RF subsystem at frequencies below 1 GHz than at higher frequencies.

Finally, electromagnetic propagation characteristics vary considerably with frequency.
Electromagnetic signals at frequencies above a few gigahertz propagate largely in straight
line paths, thus requiring an unobstructed line-of-sight path between a wireless transmitter
and receiver. At lower frequencies, however, signals can more easily pass through or around
obstructions such as foliage, buildings, and vehicles. Thus lower frequencies give better
propagation characteristics for wireless applications such as cellular and PCS telephone

-’
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systems, while higher frequencies may be perfectly adequate for point-to-point radios and
satellite systems. As arough estimate, operating range decreases by 5% to 10% as frequency
increases from 900 MHz to 2.4 GHz, and another 10% at 5 GHz.

Multiple Access and Duplexing

Because frequency spectrum is limited, and it is usually desired to accommodate as
many simultaneous users as possible, several methods have been proposed for increasing
the capacity of wireless channels. One such multiple access method is to divide the available
frequency range into many narrow [requency bands. This is called frequency division mul-
tiple access (FDMA). The AMPS telephone system, for example, uses FDMA, dividing the
25 MHz mobile receive (869-894 MHz) and transmit (824-849 MHz) bands each into 833
channels of 30 kHz bandwidth. Another method is time division multiple access (TDMA),
where voice or data is transmitted and received over a shared frequency band only during
preassigned time intervals of very short duration, and interleaved with voice or data segments
from other users. TDMA thus multiplies the number of users that can be accommodated with
a single channel, but requires critical timing and range information coordinated from a cen-
tral station. In practice, TDMA is often combined with frequency division duplexing to allow
several users for each of several frequency bands. The third popular multiple access method
is code division multiple access (CDMA). CDMA is a spread spectrum technique, whereby
the relatively narrowband signal from each user is spread out in frequency using a unique
spreading code. Several hundred signals can then occupy the same [requency band, and yet
be individually recovered at the receiver with knowledge of the original spreading code.

As mentioned earlier, full-duplex wireless communication requires a duplexing method
to provide transmit and receive channels that do not interfere with each other. Because of the
high sensitivity of most wireless receivers, the isolation between transmitter and receiver is
typically required to be on the order of 120 dB. As a practical matter, this much isolation
cannot be obtained unless frequency division duplexing is used, with separate frequencies
for transmit and receive. A bandpass filter at the input to the receiver can then be used
to attenuate transmitter signals. Often it is convenient to use a single antenna for both
transmit and receive, in which case a duplexing filter is used to pass receive frequencies
from the antenna to the receiver, and transmit frequencies from the transmitter to the antenna,
while providing enough attenuation between the transmit and receive bands to achieve the
necessary isolation. A serious drawback of duplexing filters, however, is that they generally
have several dB of insertion loss. This leads to the loss of transmit power, and increases the
noise figure of the receiver. A commercial duplexing filter is shown in Figure 1.4.

In half-duplex wireless systems, as used in many TDMA telephones and wireless LANSs,
duplexing can be accomplished by using a transmit/receive (T/R) switch, This allows a single
antenna to be rapidly switched between the transmitter and the receiver at the appropriate
times. Electronic RF switches generally provide more than enough isolation in their off
state to protect the receiver from high transmit signal levels,

Circuit Switching versus Packet Switching

Both hard-wired and wireless (cellular and PCS) telephone systems are based on cen-
tralized networks that provide a direct physical circuit between the communicaling par-
ties for the duration of the call. This is referred to as a circuit-switching nerwork. The
circuit-switched telephone network has proven to be extremely reliable for voice com-
munications, with a very high quality of service (QoS). Circuit-switched communication
systems are inefficient, however, when used for transmitting data that occurs in bursts, such
as computer data, email, and telemetry data, because the physical circuit is not fully uti-
lized. In these cases, packet-switched networks are preferred. In a packet-switched network,
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FIGURE 1.4  Photograph of a dual-band diplexer (top), a hybrid coupler (bottom left), and a
two-way power divider (bottom right), These components operate over the 800
2200 MHz frequency band, providing coverage of both AMPS and PCS bands in a
single component. (Courtesy of Sage Laboratories, Natick, MA.)

interconnected routers are used to provide multiple paths between any two points in the
network. Messages and data are divided into packets of fixed length that are independently
routed through the network from the sender to the receiver. In this way, messages and data
can be multiplexed over various paths through the network, which provides efficient and
robust communication links without tying up channel capacity unnecessarily.

The Internet is the most prevalent packet-switched network, and is used extensively
for data. email, and multimedia communication between computers. While it is possible
to use packet switching for voice communication, the fact that packet switching does not
guarantee even a minimum quality of service means that Internet telephone calls often suffer
from annoying delays and broken conversations. Newer protocols and standards, however,
should improve this situation by implementing packet switching with priority levels that
can be used for time-critical connections, such as for voice and real-time video links. In
time, we can expect the majority of voice, video, and data communications to take place
over packet-switched networks.

Propagation

Wireless communication is made possible by the fact that electromagnetic waves can
propagate through space without the need for connecting wires or other conductors. We
will see that in free space the power density of an electromagnetic wave radiated by an
antenna decreases as 1/R?. This simple model, perhaps augmented with a factor to account
for atmospheric attenuation, is usually adequate for line-of-sight (LOS) radio links, such
as point-to-point radios and satellite communications links. In other cases, such as cellular
radios in urban environments, or mobile radios in moving vehicles, the phenomena of
electromagnetic energy propagation is much more complicated. Effects such as reflections
from the ground, buildings, and vehicles, as well as shadowing from natural and man-made
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obstructions, can cause rapid variations in the amplitude of the received signal over relatively
short distances or time intervals. These effects are referred to as fading, and are primarily
due to the presence of more than one possible propagation path between the transmitter
and receiver. Because different propagation paths generally have different phase (or time)
delays, the superposition of signals at the receiver will involve constructive and destructive
interference, leading to sharp variations in amplitude as much as 20 dB.

The large variation in received signal strength caused by fading is one of the most
formidable problems facing the designer of a wireless system. Fading leads to decreased
range, lower data rates, and decreased reliability and quality of service. Many of the most
sophisticated techniques used in wireless communications have been developed primarily in
an attempt to alleviate the degrading effects of fading. These include spread spectrum tech-
nigues, the use of antenna diversity, sophisticated modulation methods, and error-correcting
codes. In all cases, such techniques increase the cost and complexity of the wireless system.

Radiated Power and Safety

Safety is a legitimate concern of users of wireless equipment, particularly in regard
to possible hazards caused by radiated electromagnetic fields. The body absorbs RF and
microwave energy and converts it to heat: as in the case of a microwave oven, this heating
occurs within the body, and may not be felt at low power levels. Such heating is most
dangerous in the brain, eyes, genitals. and stomach organs. Excessive radiation can cause
cataracts, cancer, or sterility. For this reason it is important to define a safe radiation level
standard, so that users of wireless equipment are not exposed to harmful power levels.

The most recent U.S. sufety standard for human exposure to electromagnetic radiation
is given by ANSI/IEEE Standard C95.1-1992. In the RF-microwave frequency range of
100 MHz to 300 GHz, exposure limits are set on the power density (in Watts/cm?®) as a
function of frequency, as shown in Figure 1.5. The recommended safe power density limit
is as low as 0.2 mW/em* at the lower end of this frequency range, because fields penetrate the
body more easily at low frequencies. At frequencies above 15 GHz the power density limit
rises to 10 mW/em?, since most of the power absorption at these frequencies occurs near
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FIGURE 1.5 IEEE Standard C95.1-1991 recommended power density limits for human exposure

to RF and microwave electromagnetic fields.
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the skin surface, By comparison, the sun radiates a power density as high as 100 mW/cm?
on a clear day, but the effect of this radiation is much less severe than a corresponding level
of microwave frequency radiation because the sun heats the outside of the body, with much
of the generated heat being reabsorbed by the air, while microwave power heats inside the
body. At frequencies below 100 MHz, electric and magnetic fields interact with the body
differently than at higher frequencies, and so separate limits are given for field components
at these frequencies.

In addition to the above power density limits, the FCC sets limits on the total radiated
power of some specific wireless equipment. Vehicle-mounted cellular phones (using an
external antenna) are limited to a maximum radiated power of 3 W. For handheld cellular
phones, the FCC has set an exclusionary power level of 0.76 W, below which phones are
exempt from the ANSI standard on radiated power density. Most cellular phones radiate a
maximum of 0.6 W, and newer PCS phones radiate even less power. Cellular and PCS base
stations are limited to a total effective radiated power (see Chapter 4) of 500 W, depending
on antenna height and location, but most urban base stations radiate a maximum of 10 W,
Wireless products using the ISM bands are limited to a maximum radiated power of 1 W,

While other countries have different (sometimes lower) standards for RF and microwave
exposure limits, most experts feel that the above limits represent safe levels with areasonable
safety margin. Some researchers, however, are concerned that health hazards may occur
due to nonthermal effects of long-term exposure to even low levels of microwave radiation,

Other Issues

Although the above technical issues are critical to the performance of a wireless system,
in fact the overriding consideration for the success of a given commercial wireless system
is most often its cost. The cost of a system should of course include manufacturing and
production costs, but also the cost of the infrastructure that is necessary to support, operate,
and maintain the system. This may involve components such as base stations, antenna |
towers, satellite replacement costs, insurance, fees for right-of-ways for buried cables,
technology licensing fees, advertising, billing, and nonrecoverable engineering costs (NRE),

Many wireless devices are portable and operate from battery power. Battery life is a
critical consideration for consumers, so it is important to design for the minimization of |
prime power requirements through proper component selection, as well as design techniques
to minimize power consumption. These may include shutting down parts of the system when
their function is not required, and lowering transmit power when possible.

Finally, it should be realized that consumers will expect a wireless system to offer
performance that is comparable to the wired system that it replaces. For example, consumers
will not find the convenience of a cellular phone to be worthwhile if sound quality is
significantly worse than with a wired phone, or if conversations are often interrupted.

L INTRODUCTION TO WIRELESS SYSTEM COMPONENTS

In this section we describe the basic block diagrams for the RF stages of wireless trans-
mitters and receivers, and provide an introductory discussion of the main RF and microwave
components that are used in these systems, In later chapters we will discuss the operation
and design of each of these components in much more detail, so the purpose here is simply
to provide an initial broad view of the overall wireless system. In this way the reader will
be able to see the larger context in which these individual components are used in practical
wireless systems. Figure 1.6 shows a table of commonly used symbols that are used in block
diagrams for RF and microwave components; symbols for filters are shown in Figure 1.7.

=
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FIGURE 1.6  Block diagram symbols for commonly used RF and microwave components, (Filter

symbols are shown in Figure 1.7.)

Basic Radio System

The RF stages of most wireless systems have a high degree of commonality, even
though there may be many variations in practice. The block diagrams of a typical wireless
transmitter and receiver are shown in Figures 1.8a.b, respectively.

The input to a wireless transmitter may be voice, video, data, or other information
to be transmitted to one or more distant receivers. These data are usually referred to as
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FIGURE 1.7 Symbols for filters: (a) low-pass, (b) bandpass. (¢) high-pass,
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FIGURE 1.8  Block diagram of a basic radio system: (a) radio transmitter, (b) radio receiver.

the baseband signal. The basic function of the transmitter is to modulate, or encode, the
baseband information onto a high frequency sine wave carrier signal that can be radiated by
the transmit antenna. The reason for this is that signals at higher frequencies can be radiated
more effectively, and use the RF spectrum more efficiently, than the direct radiation of the
baseband signal. The transmitter of Figure 1.8a operates by first using the baseband data to
modulate an intermediate sine wave signal, As discussed in more detail in Chapter 9, there are
many possible modulation methods. both analog and digital, that function by varying either
the amplitude, frequency, or phase of a sine wave. The output of the modulator is referred
to as the intermediate frequency (IF) signal, and usually ranges between 10 and 100 MHz,
The IF signal is then shifted up in frequency, or upconverted, to the desired RF transmit
frequency using a mixer. The mixer operates by producing the sum and difference of the
input IF signal frequency and the frequency of a separate local oscillator (LO). A bandpass
filter (BPF) allows the sum frequency to pass, while rejecting the much lower difference
frequency. If necessary, a power amplifier is used (o increase the output power of the
transmitter. Finally, the anfenna converts the modulated carrier signal from the transmitter
to a propagating electromagnetic plane wave.

The receiver of Figure 1.8b recovers the transmitted baseband data by essentially re-
versing the functions of the transmitter components. The antenna receives electromagnetic
waves radiated from many sources over a relatively broad frequency range. A input bandpass
filter provides some selectivity by filtering out received signals at undesired frequencies,
and passing signals within the desired frequency band. The bandpass filter is followed by a
low-noise amplifier (LNA), whose function is to amplify the possibly very weak received
signal, while minimizing the noise power that is added to the received signal. Placing a
bandpass filter before the LNA reduces the possibility that the sensitive amplifier will be
overloaded by interfering signals of high power. Next, a mixer is used to downconvert the
received RF signal to a lower frequency signal, again called the intermediate frequency (IF).
When the LO is set to a frequency near that of the RF input, the output difference frequency
from the mixer will be relatively low (typically less than 100 MHz), and can be easily filtered
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by the IF bandpass filter. A high gain IF amplifier raises the power level of the signal so
that the baseband information can be recovered easily. This process is called demodulation,
and today is usually performed with digital signal processing (DSP) circuits. As discussed
in more detail in Chapter 10, this type of receiver is known as a superheterodyne receiver,
because it uses frequency conversion, converting the relatively high RF carrier frequency
to a lower IF frequency before final demodulation.

Antennas

As seen from the preceding discussion, the function of an antenna is to convert an RF
signal from a transmitter to a propagating electromagnetic wave or, conversely, convert a
propagating wave to an RF signal in a receiver. In a transceiver, where a transmitter and a
receiver are co-located for full-duplex communications, the same antenna may be used for
both transmit and receive.

The aspects of antennas that are important for wireless systems are discussed in detail
in Chapter 4, along with the characteristics of the propagation channel between the transmit
and receive antennas. Some of the more obvious characteristics of an antenna include
operating frequency range, size, and pattern coverage. The radiation pattern of an antenna
is a plot of the transmitted or received signal strength versus position around the antenna.
It can be shown that the radiation pattern of an antenna is the same for transmitting and
receiving. Wireless systems that provide broadcast-type service, such as television and
AM/FM radio, require antennas with pattern coverage that is uniform in all directions. Such
patterns are called omnidirectional, and can be obtained with wire dipole and monopole
(“whip”) antennas, among others. Others systems. such as point-to-point radio and DBS
receivers, require antennas that radiate (or receive) power preferentially in one direction.
The measure of the directionality of an antenna pattern is provided by the directivity, or
gain, of the antenna; an omnidirectional antenna has low gain, while a highly directive
antenna has high gain.

An important characteristic of all antennas is that there are unavoidable relationships
between the operating frequency, size, and gain of an antenna [6]-[7]. Because of the nature
of the electromagnetic operation of an antenna, effective radiation of a signal requires that
the antenna have minimum physical dimensions on the order of the electrical wavelength
(. =c¢/f) at the operating frequency. This means that antenna size decreases with an
increase in frequency, so that antennas at low frequencies will be very large, while antennas
at microwave frequencies and higher may be very small. In addition, it can be shown that
the gain of an antenna is proportional to its cross-sectional area divided by A°, so that high
antenna gain requires an electrically large antenna. Thus a low-gain antenna used for GPS at
1.575 GHz may be as small as a few square inches, while a high gain parabolic dish antenna
used in a point-to-point radio in the same frequency band may be several meters in diameter.

More sophisticated antennas are able to change the direction of their main beam elec-
tronically. Such antennas are called phased arrays, and in the past have generally been
limited to use in military systems because of their high cost. Phased array antenna technol-
ogy, however, can be very useful in commercial wireless systems because the antenna beam
can be directed at a given user, while avoiding interference from other users. Such systems
are called adaptive arrays. or sometimes smart antennas, and may lead to increased channel
capacity for cellular and PCS telephone systems if cost reductions can be achieved.

Filters

Filters are two-port components that are used to selectively pass or reject signals on the
basis of frequency. An ideal low-pass filter (LPF) will pass all frequency components below
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its cutoff frequency, while rejecting higher frequency components, Similarly, a high-pass
filter (HPF) will pass frequency components above its cutoff frequency, while rejecting
lower frequencies. A bandpass filter (BPF) passes frequency components within a narrow
passband, while rejecting frequency components outside the passband. Figure 1.7 shows
two sets of block diagram symbols that are commonly used to represent low-pass. bandpass,
and high-pass filters.

Filters are key components in all wireless transmitters and receivers. As can be seen
from the block diagrams of Figures 1.8a.b, filters are used to reject interfering signals
outside the operating band of receivers and transmitters, to reject unwanted products from
the outputs of mixers and amplifiers, and to set the IF bandwidth of receivers. Important filter
parameters include the cutoff frequency. insertion loss, and the out-of-band attenuation rate,
measured in dB per decade of frequency. Filters with sharper cutoff responses provide more
rejection of out-of-band signals. Insertion loss. measured in dB, is the amount of attenuation
seen by signals through the passband of the filter. Another important consideration is size
and integrability with other circuit components. Today much of the front-end circuitry of
receivers and transmitters in the heavily used frequency range from 800 MHz to 2 GHz
can be monolithically integrated into a few integrated circuit packages. At the present time,
however, it is not possible to construct high-performance bandpass filters in integrated
circuit form. The inherent losses associated with RF and microwave integrated circuits
leads to filters having relatively high insertion losses and low out-of-band attenuation rates.
For this reason, most wireless systems today use individual “off-chip” filters that are located
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FIGURE 1.9  RF block diagrams for a 900 MHz GSM cellular telephone receiver and transmitter.

Each subsystem is highly integrated with commercial RF integrated circuits, but
note that the required bandpass filters are not part of the integrated circuit packages:
(a) receiver block diagram, (b) transmitter block diagram.
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on the circuit board, rather than fully integrated filters. This results in a larger and more
costly assembly, but critical filtering performance is optimized. Figure 1.9 shows the block
diagrams for acommercial GSM telephone handset with a relatively high level of integration,
where the necessary bandpass filters are separate from the integrated circuit packages.

There are many technologies available for the implementation of RF and microwave
filters [8], primarily dependent on frequency. In the frequency range from 800 MHz to about
4 GHz, most bandpass filters today are made with dielectric resonators, which offer small
size and high Q (sharp cutoff), with reasonable insertion loss. At IF frequencies (below
100 MHz) bandpass filters using quartz crystals or surface acoustic wave (SAW) devices
are very common. SAW filters have very sharp cutoffs, but suffer from the disadvantage of
insertion losses that may be as high as 20 dB. At higher microwave and millimeter wave
frequencies, waveguide resonators are often used for bandpass filters. Low-pass filters used
in wireless systems usually have less stringent requirements than do bandpass filters, and
thus are often made with simple LC networks, parallel coupled lines, or transmission line
stubs [8].

Amplifiers

There are three main categories of amplifiers used in wireless systems: low-noise
amplifiers (LNAs), used in the input stage of a receiver; power amplifiers (PAs), used in the
output stage of a transmitter; and /F" amplifiers, used in the IF stages of both receivers and
transmitters. Important specifications for amplifiers include the power gain (in dB), the noise
Sfigure, and the intercept points. The noise figure of an amplifier is a measure of how much
noise is added to the amplified signal by the amplifier circuitry. This is most critical in the
front end of a receiver, where the input signal level is very small, and it is desired to minimize
the noise added by the receiver circuitry. In addition, as we will see in Chapter 3. the noise
power in a receiver is affected more by the first few components than by later components.
Thus it is imperative that the first amplifier in a receiver have as low a noise figure as possible.

Because transistors are nonlinear devices. transistor amplifiers exhibit nonlinear effects.
Two important phenomenon that occur in amplifiers because of these effects are saruration
and harmonic distortion. At low signal levels the output power of an amplifier is linearly
proportional to the input power. But because the output voltage of an amplifier cannot
exceed the bias voltage level, output power gradually reaches a saturation point as input
power increases. Saturation is usually only an issue with power amplifiers.

A more prevalent problem is related to the fact that harmonics of input signals are
generated at the output of an amplifier, and in the case of multiple input signal frequencies
some of these harmonics will lie within the passband of the amplifier. These harmonics lead
to signal distortion (harmonic distortion). Generally the power level of distortion harmonics
is very low but, as shown in Chapter 3, the power level of some of these distortion products
increases as the cube of the input signal level. The implication of this effect is that distortion
power can be significant even for input power levels well below the saturation point of an
amplifier. In practice it is often desired to keep distortion levels as low as 50 to 80 dB below
the output signal level.

Advances in semiconductor technology have led to the development of RF amplifiers
using inexpensive silicon (Si) transistors at frequencies up to several GHz. Previously
gallium arsenide (GaAs) transistors were required for [requencies at or above 1 GHz, but
GaAs processing is very expensive and incompatible with silicon-based integrated circuit
fabrication. This limits the level of integration that can be achieved in a wireless system,
and therefore increases cost. Another semiconductor technology that is very promising is
silicon germanium (SiGe), which can be used at higher frequencies than silicon, but with
lower cost than gallium arsenide.

The design of transistor amplifiers is discussed in Chapter 6.
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Mixers

A mixer is a three-port component that ideally forms the sum and difference frequencies
from two sinusoidal inputs. This allows the important function of frequency conversion to be
performed in superheterodyne transmitters and receivers. In the case of the transmitter shown
in Figure 1.8a, the modulated baseband signal is upconverted in frequency by mixing with
a high-frequency local oscillator signal. In a superheterodyne receiver the received signal
is downconverted in frequency by mixing with a local oscillator to produce a difference
frequency (the IF frequency). In both cases filters are required to select the desired frequency
products, while rejecting undesired frequencies that are produced as a by-product of the
mixing operation.

In principle. frequency conversion can be accomplished with either nonlinear devices
(diodes, transistors), or time-varying elements (switches). Modern mixers generally use
diodes or transistors and produce many frequencies. based on the harmonics of the input
signals and their combinations, in addition to the desired sum and difference frequencies. A
passive mixer (one that uses diodes) always produces an output signal (IF) of less power than
the input (RF) signal, because of dissipative losses in the mixer as well as inherent losses in
the frequency conversion process. This loss is characterized by the mixer conversion loss.
Mixers that use active components (e.g., transistors) generally have lower conversion loss,
and may even have conversion gain. As in the case of amplifiers, harmonic distortion and
noise are also important considerations in mixer performance.

In some receivers a low-noise amplifier may not be required if the received signal level
is strong enough. This cost-saving measure results in the mixer being the first component in
the front end (second if a bandpass filter is used ahead of the mixer), which means that the
noise and loss characteristics of the mixer will dominate the performance of the receiver.
Another potential problem with this approach is that power from the local oscillator may
leak backwards through the mixer and be radiated by the receiver antenna. Such radiation
must be minimized in order to avoid interference with other users and other systems, so
there is often a specification on the LO-to-RF isolation for mixers. Active mixers generally
have very good isolation, because transistors are usually unilateral to a good degree. In
addition, as described in more detail in Chapter 7, certain mixer circuits can yield very
high isolation. Overall, however, mixer design usually involves trade-offs between noise
performance. isolation, and conversion loss.

Oscillators

Oscillators are required in wireless receivers and transmitters to provide frequency
conversion, and to provide sinusoidal sources for modulation, Typical transmitters and
receivers may each use as many as 4-6 oscillators, at frequencies ranging from several
kilohertz to many gigahertz. Often these sources must be tunable over a set frequency range,
and must provide very accurate output frequencies (often to within a few parts per million).

The simplest oscillator uses a transistor with an LC network to control the frequency
of oscillation. Frequency can be tuned by adjusting the values of the LC network, per-
haps electronically with a varactor diode. Such oscillators are simple and inexpensive, but
suffer from the fact that the output frequency is very susceptible to variations in supply
voltage, changing load impedances, and temperature variations. Better frequency con-
trol can be obtained by using a quartz crystal in place of the LC resonator. A crystal-
controlled oscillator (XCO) can provide a very accurate output frequency, especially if
the crystal is in a temperature controlled environment. Crystal oscillators, however, can-
not easily be tuned in frequency. A solution to this problem is provided by the phase-
locked loop (PLL). which uses a feedback control circuit and an accurate reference source
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(usually a erystal controlled oscillator) to provide an output that is tunable with very high
accuracy.

Phase-locked loops and other circuits that provide accurate and tunable frequency
outputs are called frequency synthesizers. Virtually all modern wireless systems rely on
frequency synthesizer circuits for the key stages of frequency conversion. Important
parameters that characterize frequency synthesizers are tuning range, frequency switching
time, frequency resolution, cost. and power consumption. Another very important param-
eter is the noise associated with the output spectrum of the synthesizer, in particular the
phase noise. Phase noise is a measure of the sharpness of the frequency domain spectrum of
an oscillator, and is critical for many modern wireless systems. Phase noise and oscillator
design will be studied in more detail in Chapter 8.

Baseband Processing

Our main concern in this book is with the RF stages of transmitters and receivers, in
contrast to the processing of signals between the IF stages and the baseband input or output
data. Nevertheless, it is worthwhile to say a few words here about what happens to the
signal in a receiver after the IF stage, in order to have a more complete view of the overall
wireless system.

After down conversion to an IF signal (which may occur in two or more stages), the
received signal must be demodulated. The majority of wireless systems today utilize coher-
ent digital modulation methods (discussed in Chapter 9), for which demodulation requires
a local oscillator synchronized in both frequency and phase with the down-converted car-
rier signal. These processes, called carrier acquisition and carrier synchronization, have
traditionally been very difficult to implement, but the advent of powerful digital signal
processing (DSP) chips allows these functions to be performed easily and inexpensively.
Demodulated baseband data can then be obtained from the output of the DSP stage, per-
haps even including error correction. If the baseband information is analog, as in the case of
cellular telephones, the received digital data will be converted back to analog form with a
digital-to-analog converter (DAC). Similarly, the transmission of baseband analog informa-
tion would first involve conversion to digital form using a sampler and an analog-to-digital
converter (ADC). Framing and multiplexing functions may also be performed on the digital
baseband data.

CELLULAR TELEPHONE SYSTEMS AND STANDARDS

With the preceding introduction to wireless systems and some of the key components
used in receivers and transmitters, we can now look at cellular telephone systems in more
detail. Cellular telephony is the most significant, and perhaps complex, application of wire-
less technology, and many of the topics discussed in later chapters are of direct importance
to cellular systems.

Cellular and the Public Switched Telephone Network

As discussed earlier, cellular telephony represents by far the largest commercial ap-
plication of wireless technology. While there are many different standards and systems in
worldwide use, all rely on the concept of cellular coverage regions for frequency reuse, and
rely on circuit-switched public telephone networks to transfer calls between users.

Figure 1.10 shows how a geographical area can be covered with hexagonal-shaped
cellular regions. Cellular telephone users within each cell are serviced by a base station at
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FIGURE 1.10  Layout of hexagonal cell areas and base stations for cellular radio systems.

the center of that cell. To avoid co-channel interference, adjacent cells are assigned different
sets of channel frequencies. Frequencies can be reused at two different cells when there is
at least one intervening cell with different frequency assignments. F requency reuse is one
of the key advantages of cellular radio systems because it permits more efficient utilization
of valuable radio spectrum. This method is generally used for FDMA, TDMA, and CDMA
multiple access systems. In the case of CDMA, further interference suppression is obtained
through the use of spread spectrum techniques. (For marketing reasons, service providers
often distinguish between “cellular telephone service™ and PCS, but PCS still employs a
cellular radio system.)

In operation, a cellular telephone user communicates with the closest base station, even
though it is likely that an adjacent base station may receive a weaker signal from the same
user. If the user is mobile, a hand-off from one base station to the next will occur when the
received signal power from the closer base station becomes greater than the received signal
power at the original base station. Ideally, this switchover occurs quickly and reliably, and
is not noticed by the user.

All the base stations within a given geographical area are connected to a mobile tele-
phone switching office (MTSO), which typically can handle several thousand simultaneous
telephone calls. The MTSO provides connections to the public switched relephone network
(PSTN), as shown in Figure 1.11. The PSTN includes high-capacity fiber-optic lines be-
tween cities, as well as transoceanic lines between countries. Local telephone exchange
offices provide connections to individual private and business users, generally with twisted
copper wire pairs. All cellular phone calls thus are routed through the PSTN, even when
both parties are using cellular phones. In some newer PCS systems, however, callers may
be connected through the base station if they are within the same cell site.

AMPS Cellular Telephone System

Like other first generation analog cellular systems, the AMPS (Advanced Mobile Phone
Service) system was based on technology of the 1970s. While most other first generation
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FIGURE 1.11 Pictorial diagram showing the connection of a cellular telephone and base station to

the public switched telephone network.

systems have been replaced with digital cellular, for reasons discussed in Section 1.1 the
U.S. AMPS system is only slowly being supplanted by newer technology.

The mobile transceiver in the AMPS system uses a transmit frequency in the range of
824-849 MHz, and a receive frequency in the range of 869-894 MHz. Both of these bands
are divided into 832 channels that are 30 kHz wide. The maximum frequency deviation
of the frequency modulated (FM) signal is 25 kHz, allowing a 5 kHz guard band on each
channel [2], [4]. Since separate frequencies are used for transmit and receive, full duplex
operation is provided (an example of frequency division duplexing). Multiple users within a
cell are assigned different transmit and receive channels (frequency division multiplexing).
A typical cell in the AMPS system has an area of about 10 square miles,

Figure 1.12 shows the block diagram of a typical AMPS transceiver. The receiver is
dual-conversion, meaning that there are two stages of frequency down-conversion, with
two mixers and two local oscillators. The desired received channel is selected at the first
IF stage, which uses a phase-locked loop to provide the proper local oscillator frequency.
The transmitter is single-conversion, but again a phase-locked loop is used to provide the
necessary carrier frequency. The transmit-receive duplexer operates as a channel separation
filter, passing the higher frequency band to the receiver circuitry while blocking the lower
frequency transmitted signal; the converse operation is performed between the transmitter
and antenna, The duplexer is usually a ceramic resonator filter. Early mobile transceivers
used discrete components, and were large and had short battery life. Newer transceivers have
most of the circuitry of Figure 1.12 integrated with one or two chips, except for the filters.

Communication between a mobile cellular phone and the base station involves four
separate simplex (one-way) channels, listed as follows:

FVC—forward voice channel (base to mobile)
RVC—reverse voice channel (mobile to base)
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FIGURE 1.12 Block diagram of an AMPS mobile transceiver.

FCC—forward control channel (base to mobile)
RCC—reverse control channel (mobile to base)

The two voice channels are used for voice (ransmission and reception, while the two
control channels are used for data messages that control call initiation, termination, and
hand-offs. Each base station uses a dedicated FCC and RCC for all users within its cell,
When an AMPS cellular telephone is first turned on, it scans the group of preassigned
system FCC channels, and determines which FCC signal is strongest. This FCC is assumed
to belong to the closest base station. When the signal strength of the FCC drops below
a certain level, the mobile unit again scans the FCCs to pick out a new base station, and
re-establishes contact over a new FCC.

When a call 1s placed to a mobile telephone, the MTSO sends out the request to every
base station in the system, which broadcasts the called phone number over the FCCs. If
the mobile phone is on, and within the coverage area of the system, it responds by sending
its mobile identification number (MIN) over the RCC. The MTSO then sets up the call by
having the base station assign an unused FVC and RVC, and sends a ring signal to the
mobile phone. When a call is made from a mobile phone, a call initiation request is sent to.
the base station over the RCC, along with the MIN and the number being called. The MTSO
makes the connection through the PSTN, and assigns voice channels with the base station.
These procedures typically occur in a few seconds. Further details of cellular telephone
protocols can be found in reference [4].

Digital Personal Communications System Standards

Second generation cellular telephone systems use digital modulation methods, with
the primary advantage of allowing more users in a given frequency bandwidth. Additional
features may include lower transmit powers, longer battery life, the use of error correcting
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TABLE 1.4  International Digital PCS System Standards

PCS System IS-54/1S-136 I1S-95 GSM
Transmit Frequency (RVC) 824849 MHz 824849 MHz 890-915 MHz
Receive Frequency (FVC) 869—894 MHz 869-894 MHz 935-960 MHz
Duplexing Method FDD FDD FDD
Multiple Access Method TDMA CDMA TDMA
Channel Bandwidth 30 kHz 1.25 MHz 200 kHz
Modulation QPSK QPSK GMSK
Channel Bit Rate 48.6 kbps 1.228.8 kbps 270.833 kbps
Users per Channel 3 64 8
User Bit Rate 8 kbps 1.2-9.6 kbps 13 kbps
Number of Users 2,496 15,960 992

codes for improved Quality of Service, and the possible use of encryption for privacy. As
in the case of first generation analog systems, there are a multitude of competing systems
proposed and in use for digital PCS. In the United States, digital PCS systems have initially
been deployed using the same frequency bands as the AMPS system, but newer PCS ser-
vices are using a frequency band near 1900 MHz that was recently allocated by the FCC,
and auctioned to service providers in 1995. In Europe and some other countries, second
generation cellular services use frequency bands at either 900 MHz or 1800 MHz. Japan
currently has several PCS services operating at various bands from 800 MHz to 1500 MHz
and at 1900 MHz.

Specifications for the three most commonly used digital PCS standards are listed in
Table 1.4. Interim standards (1S) are communications standards that have been agreed
upon by members of the Telecommunications Industry Association. The two competing
PCS standards in the US are IS-54, a TDMA system, and 1S-95, which uses CDMA. (IS-
136 is an upgraded version of 1S-54.) The predominant PCS system in Europe and many
other countries is GSM, which uses TDMA technology. While first generation cellular
systems were intended only for voice communications, most second generation systems
can provide some basic data services, such as paging, fax, and low-data rate access to
computer networks. Such services will be further enhanced when third generation personal
communication systems are implemented.
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PROBLEMS

1.1

1.3

1.4

5

How many U.S. PCS/cellular telephone subscribers were there in the previous year? What was the
revenue generated by this market? How many cellular users were there worldwide? Use these data in
conjunction with the figures presented in the beginning of this chapter to estimate the number of U.S.
subscribers for the current and the following years.

Gather data on the market size for wireless local area networks in the United States during the last
five vears. Plot this information, and extrapolate the curve to estimate the market for WLANSs for the
next three years. )

Consider the frequency spectrum from 50 MHz to 2 GHz. Using data from Appendix A on frequency
allocations, find the percentage of this frequency band that has been freely allocated to broadcast
FM radio and television in the United States, Compare this 1o the percentage that is allocated to
wireless systems such as cellular/PCS telephone, GPS, paging, and the ISM bands. Write a short
essay discussing vour opinion of this situation. Should policies regulating the frequency spectrum be
changed to better serve the public?

Estimate the amount of energy required to operate a typical cellular telephone for one minute of talk
time. If this phone is charged for one hour each day by using a solar panel with an area of 6" x 6,
estimate the amount of talk time that can be obtained daily. (Obtain reasonable estimates for the power
consumption of a typical cellular phone, the efficiency of solar cells, and the average power density of
sunlight, and list your sources for this information. Shew your work, and discuss your assumptions.)
Research consumer satisfaction with satellite-based telephones, and compare with the satisfaction of
cellular/PCS subscribers. Consider monthly costs, availability of service, and quality of service. Can
you draw any conclusions as (o the long-term outcome of land-based versus satellite-based wireless
telephone service'
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Transmission Lines and
Microwave Networks

Transmission lines are essential components in modern wireless systems, being used to
connect antennas to transmitters and receivers, for impedance matching in mixers and amplifiers,
and as resonant elements in oscillators and filters, It is likely that the reader is already familiar
with the fundamental topics of transmission line wave propagation, reflection, transmission,
impedance transformation, and the Smith chart, but we will discuss this material here for
completeness, and for those who may need a review of these topics. We also require some
familiarity with S parameters, impedance matching techniques, and basic microwave network
analysis for use in later chapters, and so these topics are also presented. Our treatment of these
topics will be more than adequate for the purposes of this book, but the reader who wants to delve
deeper into these topics can refer to references [1]-[2]. Finally, we note that our presentation of
transmission lines and networks can be accomplished from a circuit model perspective, without
recourse to electromagnetic analysis. The reader should realize, however, that transmission line
theory ultimately is based on the rigorous application of electromagnetics.

TRANSMISSION LINES

The key difference between standard circuit analysis and transmission line theory is
electrical size. Circuit analysis assumes that the physical dimensions of a network are
much smaller than the electrical wavelength, while transmission lines may be a consider-
able fraction of a wavelength, or many wavelengths, in size. Thus a transmission line is
a distributed-parameter network, where voltages and currents can vary in magnitude and
phase over the length of the line. We begin our treatment of transmission lines with a
lumped circuit model for an incremental length of line, and then study the transmission and
reflection of electric waves on the line.

29
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FIGURE 2.1  Voltage and current definitions and the equivalent circuit for an incremental length of

transmission line. (a) Voltage and current definitions, (b) Lumped-element equivalent
cireuit,

Lumped Element Model for a Transmission Line

As shown in Figure 2.1a, a transmission line is often schematically represented as a
two-wire line, since transmission lines usually consist of two parallel conductors. A short
segment Az of transmission line can be modeled as a lumped-element circuit, as shown in
Figure 2.1b, where R, L, G, and C are per unit length quantities defined as follows:

R = series resistance per unit length, for both conductors, in §2/m.
L = series inductance per unit length, for both conductors, in H/m.
G = shunt conductances per unit length, in S/m.

(' = shunt capacitance per unit length, in F/m.

The series inductance L represents the total self-inductance of the two conductors, and
the shunt capacitance C is due to the close proximity of the two conductors. The series
resistance R represents the resistance due to the finite conductivity of the conductors, and
the shunt conductance is due to dielectric loss in the material between the conductors, R
and G, therefore, represent loss. A finite length of transmission line can be viewed as a
cascade of sections of the form of Figure 2.1b.

From the circuit of Figure 2.1b. Kirchoff’s voltage law can be applied to give

iz, t
vz, t)— RAzi(z,t) — LAz ) —viz+ Az, 1) =0, (2.1a)
and Kirchoff’s current law leads to
ov(z 4+ Az, ¢t
(2.8 — Ghgile + Az, 1) —CaYET 8B _ o L A 8 =0, (2.1b)

ar

Dividing (2.1a) and (2.1b) by Az and taking the limit as Az — 0 gives the following




2.1 Transmission Lines 31

differential equations for the voltage and current on the line:

du(z, di(z,
lff. 1) =—Ri('z.r)—L“( I). (2:23)
a9z ot
di(z, vz,
B _ it 1y i PR (2.2b)
az ot

These equations are the time-domain form of the transmission line, or telegrapher, equa-
tions. For the sinusoidal steady-state condition, with cosine-based phasors, (2.2a) and
(2.2b) simplify to

dV(z)

o —(R+ jwl)I(z), (2.32)
adz

di(z

% = —(G + joC)V(z). (2.3b)

The solution of these differential equations leads to traveling voltage and current waves on
the transmission line.

Wave Propagation on a Transmission Line

Equations (2.3a) and (2.3b) can be solved simultaneously to give a single wave equation
for either V(z) or I(z). by eliminating either /(z) or V(z):

*V(z 2
d E - y V() =0, (2.4a)
dz?
.7.‘{ - 2
TN 2y =0, (2.4b)
dz?
where
y=a+jf =V(R+ joL)G + joC), (2.5)

is the complex propagation constant. The imaginary part, f8. of the complex propagation
constant is called the phase constant, while the real part, «, is the attenuation constant.
Note that the propagation constant is generally a function of frequency.

Traveling wave solutions to (2.4) can be found as

Viz) = Ve "5+ Vy e, (2.6a)
I(z) = I e 7 + I e, (2.6b)

where the ¢™"? term represents wave propagation in the +z direction, and the ¢”* term
represents wave propagation in the —z direction. Applying (2.3a) to the voltage of (2.6a)

gives the current on the line:

14

I =——
& R+ jwL

(Ve — Ve ],
Comparison with (2.6b) shows that if a characteristic impedance, Zy, is defined as

. R+ jwL R+ joL
Zy= SO0 = \/ I ) (2.7
¥ G+ joC
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then the voltage and current on the transmission line can be related as

vt -V,
% =Zy=—2.
Iy Iy
Then (2.6b) can be rewritten in the following form:
v+ V.-
() = =L vz _ 0 vz 2.8
D=2 Z s

Converting the phasor voltage of (2.6a) to the time domain gives

vz, )= |VyF

cos(wt — Bz +¢7)e™™ + |VU' | cos(wt + Pz + ¢ e, (2.9)

where 6% is the phase angle of the complex voltage VUi. The wavelength of the traveling
waves is defined as the distance between two successive points of equal phase on the wave
at a fixed instant of time, which is seen to be
2
A= —\ (2.10)
B
The phase velocity of the wave is defined as the speed at which a constant phase point |
travels down the line, and is given by
Gy e 11)!
Wi = = = — = ' by
P de B .

since w = 2m f,

Lossless Transmission Lines

The preceding results apply to general transmission lines, including loss effects, and
it is seen that the propagation constant and characteristic impedance are complex. In many
practical cases, however, the loss of the line is very small and can be neglected, resulting in
a simplification of the above results. Thus, setting R = G = 0in(2.5) gives the propagation
constant as

y=a+ jf=jouvLC,
or,

B =wvLC, (2.12a)

o =0 (2.12b)

As expected for the lossless case, the attenuation constant « is zero. The characteristic
impedance of (2.7) reduces to
L.
0= ===k
Ve

which is now a real number. The general solutions for voltage and current on a lossless
transmission line can then be written as

Z (2.13)

Viz) = Vgfe P 4 Viel, (2.14a)
v Ve

1) = L0 gy Yo sr: (2.14b
Zn Zy \
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Viz), I(z)
s i
- + _}
Zo B Vi
o : N
* — z
J 0

FIGURE 2.2 A transmission line terminated in a load impedance Z; .

The wavelength on the line is

2w 2
A== ; (2.15)
f wy LC
and the phase velocity on the line is
2] |
Uy = — = ——. (2.16)
"7 B JLC

Terminated Transmission Lines

Figure 2.2 shows a lossless transmission line terminated in an arbitrary load impedance
7. This problem will illustrate wave transmission and reflection on transmission lines,
which are fundamental properties of transmission line circuits.

Assume that an incident wave of the form V, e /% is generated from a source at
7 < (0. We have seen that the ratio of voltage to current for such a traveling wave is Zy,
the characteristic impedance. But when the line is terminated in an arbitrary load Z; # Zy,
the ratio of voltage to current at the load must equal Z;. Thus, a reflected wave must be
generated at the load with the appropriate amplitude to satisfy this condition. The total
voltage on the line can then be written as in (2.14a), as a sum of incident and reflected
voltage waves. Similarly, the total current on the line consists of incident and reflected
waves, as described by (2.14b).

The total voltage and current at the load are related by the load impedance, so at z = 0
we must have

VO V4V
0 V=V

Zy Zy.

Solving for V,; gives

_fi—2y

Ve SR
O ZL + Zp

The amplitude of the reflected voltage wave normalized to the amplitude of the incident
voltage wave is defined as the valtage reflection coefficient. I':

% _Li—Z @17
Vo Zu+2Zy I
A current reflection coefficient, giving the normalized amplitude of the reflected current
wave, can also be defined. But because such a current reflection coefficient is just the
negative of the voltage reflection coefficient [as seen from (2.14)], we will avoid confusion
by using only the voltage reflection coefficient in this book.
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The total voltage and current on the line can then be written using the voltage reflection
coefficient as

V(z) = Vy [e7 P 4 Teif?, (2.18a)

Ve ;
1(z) = ==[e7 /P — Telf?], (2.18b)
Zy
From these equations it is seen that the voltage and current on the line consist of a superpo-
sition of an incident and reflected wave; such waves are called standing waves. Only when
I' = 0 is there no reflected wave. To obtain I' = (), the load impedance Z; must be equal
to the characteristic impedance Zj, of the line, as seen from (2.17). Such a load is then said
to be matched to the line, since there is no reflection of the incident wave.
Now consider the time-average power flow along the line at the point z:
“
| £, I |VU+ = —2ifz 2jfz 2;
ngZERe{V(:)f (“)}ZEZ—URE“ =TT L Te =%},

where (2.18) has been used, The middle two terms in the brackets are of the form A — A* =
2j Im {A}, and so are purely imaginary. This simplifies the result to

b 11
2 Zy

(1=, (2.19)

which shows that the average power flow is constant at any point on the line, and that
the total power delivered to the load is equal to the incident power (V" |*/2Z;), minus
the reflected power (| V|12 /2Zp). If I' = 0, maximum power is delivered to the load,
while no power is delivered for [I"| = 1 (all incident power is reflected from the load). The
preceding discussion assumes that the generator is matched, so that there is no re-reflection
of the reflected wave from the generator at 7 < 0 (the case of a mismatched generator will
be treated later).

When the load is mismatched, then, not all of the available power from the generator
is delivered to the load. This “loss™ is called the retirn loss (RL), and is defined (in dB) as

RL = —20log|T'| dB, (2.20)

so that a matched load (I" = 0) has a return loss of oo dB (no reflected power), whereas a
total reflection (|I'| = 1) has a return loss of 0 dB (all incident power is reflected).

If the load is matched to the line, I' = 0 and the magnitude of the voltage on the line is
|V(z)| = |V, |, which is a constant. For this reason such a line is sometimes said to be “flat.”
When the load is mismatched, however, the presence of a reflected wave leads to standing
waves where the magnitude of the voltage on the line is not a constant. Thus, from (2.18a),

|V(2) = |Vg'||1 + e

= [V [[1+ TeP] = V[ |1 + m1e =200 @21y

where £ = —z is the positive distance measured from the load at z = 0 back toward the
generator (see Figure 2.2), and ¢ is the phase of the reflection coefficient (I" = |I"|e/”).
This result shows that the voltage magnitude oscillates with position z along the line. The
maximum value occurs when the phase term e/ =2/ = |_and is given by

Vinar = |V [(1+T)). (2.22a)

Similarly, the minimum value of voltage magnitude occurs when the phase term
ey i
e/W=2P0 = 1 and is given by

Vinin = Jv[r[(] = |r|) (2.22b)
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As |T'| increases, the ratio of Ve t0 Vi increases, so a measure of the mismatch of
a line, called the standing wave ratio (SWR), can be defined as

Vo _ 14T

SWR = = 3
IVmin = |r|

(2.23)

This quantity is also known as the voltage standing wave ratio (VSWR). From (2.23) it is
seen that the SWR is a real number such that 1 < SWR < oo, where SWR = 1 implies a
matched load.

From (2.21), it is seen that the distance between two successive voltage maxima (or
minima) is £ = 2w /28 = mA /27 = A/2, while the distance between a maximum and a
minimum is £ = /28 = A/4, where 4 is the wavelength on the transmission line.

The reflection coefficient of (2.17) was defined as the ratio of the reflected to the
incident voltage wave amplitudes at the load (¢ = 0), but the reflection coefficient can be
generalized to any point £ = 0 on the line as follows. From (2.14a), with z = —¢, the ratio
of the reflected voltage to the incident voltage is

s Vgrem i —2jpt

| (f:' - W — F(O)e 1P 3 (224}
where I'(0) is the reflection coefficient at z = 0, as given by (2.17). This form is useful
when transforming the effect of a load mismatch down the line.

We have seen that the real power flow on the line is a constant, while the voltage
amplitude, at least for a mismatched line, is oscillatory with position along the line. The
perceptive reader may therefore conclude that the impedance seen looking into the line
must vary with position, and this is indeed the case. At a distance £ = —z from the load,
the input impedance seen looking toward the load is given by

G I [emf St I‘e—iﬂf:} _ | 4+ e~ 2Jbt (225)

T =g T “OV§ et —Te bt 0 T2t

where (2.18a.b) have been used for V(z) and /(z). A more usable form of this result may
be obtained by using (2.17) for I" in (2.25):

(Z1 + Zo)elPt +(Z), — Zo)e P!
N2y + Zo)elPt —(Zy, — Zo)e I
_ 7, Zp cos Bl + jZy sin BE

Zycos B+ jZp sin B¢
L Ltz tan 8¢
= "Zo+ jZy tan pe

Zin =2Z

This is an important result giving the impedance at the input of a length of transmission
line with an arbitrary load impedance. We will refer to this result as the transmission line
impedance equation. Some special cases of this result will be considered next.

) ) EXAMPLE 2.1 BASIC TRANSMISSION LINE CALCULATIONS
n))))

A load impedance of 130 + j90 € terminates a 50 € transmission line thatis 0.3 &
long. Find the reflection coefficient at the load, the reflection coefficient at the
input to the line, the SWR on the line, the return loss, and the impedance seen at
the input to the line.
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Solution
The reflection coefficient at the load can be found from (2.17):

Z,—Zs (1304 j90)—§
pofr—Z  (130+790) =30 o0 018
Zf. -+ Zu (130 -+ .!9”) + 50

Equation (2.24) can be used to transform this reflection coefficient down the line
to the input, using the fact that ¢ = (2 /4)(0.34) = 108":

(L) = DO = (0.598 £21.8")e /") = 0,598 /165.8°
The SWR on the line is given by (2.23):

14T 140.598

SWR = = .
=[] 1-0.598

3.98

The return loss can be calculated using (2.20)
RL = —=20log |I'| = —201og(0.598) = 4.47dB

Finally. the input impedance seen at the input to the line is found from (2.26);

Zu+jZoan e _ (130 + j90) + j50 tan(108°)
"Zo+jZ, an Bt~ 50+ j(130+ j90) tan(108°)
=12.75+ j5.8Q )

Zin=Z

[

Special Cases of Terminated Transmission Lines

A number of special cases of lossless terminated transmission lines are useful in prac-
tice, so it is helpful to consider the properties of such cases here.

Consider first the transmission line circuit shown in Figure 2.3, where a line is termi-
nated in a short circuit, Z; = 0. From (2.17}) it is seen that the reflection coefficient for a
short circuit is I' = —1; it then follows from (2.23) that the standing wave ratio is infinite,
From (2.18) the voltage and current on the short-circuited line can be written as

V(Z) = V' [e " —e/#] = =2V, sin B2, (2.27a)
) /A

HZ)= L le /P 4 o] = 20 cos Bz, (2.27b)
Z[] Zﬂ

which shows that V=0 at the load (as expected, for a short circuit), while the current is a
maximum there. From (2.26), or the ratio V(—¢)/1(—¢£), the input impedance can be found

as
Zy, = jZytan B¢, (2.28)
Viz), I(z)
——— Vi
Zo V= {)_ Z =0
=1 | e
= 0 z

FIGURE 2.3 A transmission line terminated in a short circuit.
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(a) Voltage. (b) current. and (¢) impedance {R;, = () or o) variation along a short-
circuited transmission line.

which is seen to be purely imaginary for any length, £, and to take on all values between +joo
and —joo. For example, when £ = 0 we have Z;, = 0, but for £ = 1 /4 we have Z;, = +joo
(open circuit). Equation (2.28) also shows that the impedance is periodic in €, repeating for
multiples of A/2. The voltage. current, and input reactance for the short-circuited line are
plotted in Figure 2.4,

Next consider the open-circuited line shown in Figure 2.5, where Z; = oo, Dividing the
numerator and denominator of (2.17) by Z; and allowing Z; — oo shows that the reflection
coefficient for this case is ' = 1, and thus the standing wave ratio is again infinite. From

FIGURE 2.5

V(z). I(z)

= o) /=0
+
Zo. B v, 2 o
- o
| | .
~{ 0 Z

A transmission line terminated in an open circuit.
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FIGURE 2.6  (a) Voltage, (b) current, and (¢) impedance (R;, = 0 or oo) variation along an open-

circuited transmission line.

(2.18) the voltage and current on the open-circuited line are

V(Z) = Vi [e™ /% + /%] = 2V;" cos Bz, (2.29a)
Voh o s g =25V

1(Z) = 2 [e=i# — if7) = ~2L0 g go (2.29b)
Zy Zy

which shows that now / = () at the load, as expected for an open circuit, while the voltage is
a maximum, The input impedance can be found from (2.26), or from the ratio V(z)//(z), as

Zip = "’J -ZU cot ﬁfs (230]

which is also purely imaginary for any length, £. The voltage, current, and input reactance
of the open-circuited line are plotted in Figure 2.6.

Finally, consider terminated transmission lines with some special lengths. For example,
it £ = A/2,(2.26) shows that

Zin=17Zy, (2.31)

meaning that a half-wavelength section (or any multiple of 4 /2) of transmission line does
not alter or transform the load impedance. regardless of the characteristic impedance of the
line.




2.1 Transmission Lines 39

Zy B

e Y

=l 0

FIGURE 2.7  Transmission line circuit for mismatched load and generator.

If the line is a quarter-wavelength long or. more generally, £ = A/4 +ni /2, forn =
1.2,3,...,(2.26) shows that the input impedance is given by

_7

Ty = =2,
2T T

(2.32)
Such a line is called a guarter-wave transformer because it has the effect of transforming
the load impedance, in an inverse manner, depending on the characteristic impedance of the
line. This provides a useful practical method of impedance matching, which we will study
in more detail in a later section.

Generator and Load Mismatches

In the preceding examples of transmission line circuits it was assumed that the generator
was matched to the transmission line, so that no reflections occurred at the generator. In
general, however, both generator and load may present mismatched impedances to the
transmission line. We will study this case here, and see that the condition for maximum
power transfer from generator to load may, in some situations, require a standing wave on
the line.

Figure 2.7 shows a transmission line circuit with arbitrary generator and load impe-
dances, Z, and Z;, which may be complex. The transmission line is assumed to be lossless,
with length £ and characteristic impedance Zg. This circuit is general enough to model most
passive and active networks that occur in practice.

Because both the generator and load are mismatched, multiple reflections can occur on
the line, since reflected waves from the load will re-reflect from the generator, and form an
infinite sequence of reflections. In the steady state, the net result is a single wave traveling
toward the load, and a single reflected wave traveling toward the generator. We can analyze
the circuit of Figure 2.7 by first finding the input impedance looking into the terminated
transmission line from the generator end. Thus, from (2.25) and (2.26),

; 1 4 [pe208¢ Zy+ jZotan B
N ik e wid ), (2.33)
1 — [ye—2/B¢ Zy+ jZytan BL
where Iy is the reflection coefficient of the load:
P oL =g, (2.34)
Zy+ Zy
The voltage on the line is given by (2.18a), and we can find V', the amplitude of the incident
wave, from the voltage at the generator end of the line, where z = —{:
Vi—8)=V A = v+(eiﬁf 4 e /Pty
! Zin + Zg ! '
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so that
Vit = Voo : (2.35)
R Zin+2Z, (elft + Te— ity o
This expression can be rewritten, using (2.33), as
7 e~ IAE _
Vit = Vp—n — (2.36)
‘ Z{) + Zg (I = Fffrge 218 )
where I", is the reflection coefficient seen looking into the generator:
Zy— Zj
T M (2.37)
: Zi+ Zy
We can calculate the power delivered to the load as
= ]R Viad VinI"R : R 2.38
= ‘é e{Vin 'mll = J m| e 7_m 7“1 g (& Zoo (2.38)
Now if Zi, = Riy + jXin and Z, = R, + jX,. then (2.38) can be reduced to
| 2 R,
P = - = (2.39)

'|VJ¢| 2 ) 2"
2 (Riﬂ +RK] +(X|n+ Xg)

We can now use these general results to consider several special cases of load impedance,
for a fixed generator impedance.

First assume the case in which the load is matched to the line, so that Z; = Zg. Then
'y = 0,and SWR = 1 on the line. The input impedance is Z;, = Zj, and the power delivered
to the load is, from (2.39),

I 2 Zp

B=zn .
£ 2| Rl (.Z{J"'R,L')ZJ’- Xﬁ

(2.40)
Next, consider the case in which the generator is matched 1o the input impedance of a
mismatched line. That is. the load impedance Z; and/or the transmission line parameters
pt and Z, are selected to make the input impedance Zy, = Z,. so that the generator is
matched to the load presented by the terminated transmission line. Then the overall reflection
coefficient, I', seen at the input to the line is zero:

Zin = zg

=% =0,
zin‘i‘“zg

Note, however, that for this case in general I'y 5 0 and I'; 3£ 0, and there may be a
standing wave on the line. The power delivered to the load is

L, 2 R

Pe= |V | ——t—. 241
: 2I ¢l 4(R2+X2) (&41)

Observe that even though the terminated line is matched to the generator, the power delivered
to the load may be less than the power delivered to the load from (2.40), where the line
was matched to the load, but not to the generator. This leads to the question of what is the
optimum load impedance, or equivalently, what is the optimum input impedance, to achieve
maximum power transfer to the load for a given generator impedance.

If we assume the generator series impedance, Z,, is fixed, we may vary the input
impedance Z;, until we achieve the maximum power delivered to the load. Knowing Z,. it
is then easy to find the corresponding load impedance Z; via an impedance transformation
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along the line. To maximize Py, we differentiate with respect to the real and imaginary parts
of Z,. Using (2.39) gives

0P _ o, 1 = 2Rin(Rin + Ry) _q
Ry (Rin + Re)* + (Xin 4+ X)*  [(Rin+ R)* + (Xin + X212 7
or
R? — RL + (Xin + X =0. (2.42a)
aPr‘ "’2Xirl(Xin + Xg)
=0—- — — 55 =
X [( Rm +- Rg}" + (Xin + Xg_)"]"
ar

Xin(Xip + Xe) = 0. (2.42b)
Solving (2.42a,b) simultaneously for Rj, and Xj;, gives Ry, = R, and X, = =X, or
Zii= Z;. (2.43)

This condition is known as conjugate matching, and results in maximum power transfer to
the load, for a fixed generator impedance. Under these conditions the power delivered to
the load is

e= 5Vl 5 (2.44)
&

which is seen to be greater than or equal to the powers of (2.40) or (2.41). Also note that the
reflection coefficients I'y, I'y. and I" may be nonzero. Physically, this means that in some
cases the multiple voltage reflections on a mismatched line may add in phase to deliver
more power to the load than would be delivered if the line were matched (no reflections). If
the generator impedance is real (X, = 0), then the last two cases reduce to the same result,
which is that maximum power is delivered to the load when the loaded line is matched to
the generator (R;, = R, with Xj; = X, =0).

Finally, note that neither matching for zero reflection (Z;, = Z; ), nor conjugate match-
ing (Zin = Z}), necessarily yields a system with the best efficiency. For example, if Z,
Zi =7y then both load and generator are matched (no reflections), but only half the power
produced by the generator is delivered to the load (half is lost in Z,), for a transmission
efficiency of 50%. This efficiency can only be improved by making Z, as small as possible.

THE SMITH CHART

The Smith chart, shown in Figure 2.8, is a graphical aid that is very useful for solving
transmission line problems. The reader may feel that, in this day of scientific calculators
and powerful computer-aided design software (CAD), graphical solutions have no place in
modern engineering practice. In fact, however, the Smith chart is more than just a graphical
technique. Besides being an integral part of much of the current CAD software and test
equipment for microwave design, the Smith chart provides an extremely useful way of
visualizing transmission line phenomenon, and so is also important for pedagogical reasons.
Microwave and RF engineers can develop intuition about transmission line and impedance
matching problems by learning to think in terms of the Smith chart.
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FIGURE 2.8  The Smith chart.

Derivation of the Smith Chart

At first glance the Smith chart may seem intimidating, but the key to its understanding
is to realize that it is essentially a polar plot of the voltage reflection coefficient. I". Let
the reflection coefficient be expressed in magnitude and phase (polar) form as I = ||/,
Then the magnitude |I'] is plotted as a radius ([I'| = 1) from the center of the chart, and
the angle 8 (—180° < 6 < 180%) is measured from the right-hand side of the horizontal
diameter. Any passively realizable reflection coefficient can then be plotted as a unique
point on the Smith chart.

The real utility of the Smith chart, however, lies in the fact that it can be used to
convert {rom reflection coefficients to normalized impedances (or admittances), and vice
versa, using the impedance (or admittance) circles printed on the chart. When dealing with
impedances on a Smith chart, normalized quantities are generally used, which we will de-
note by lowercase letters. The normalization constant is usually the characteristic impedance
of the transmission line. Thus, z = Z/Z; represents the normalized version of the impe-
dance Z.

If a lossless line of characteristic impedance Zj is terminated with a load impedance
Z, . the reflection coefficient at the load can be written from (2.17) as

~ |
r=2t

=== IT"e’?, (2.45)
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where z; = Z;/Zq is the normalized load impedance. This relation can be solved for z; in
terms of I" to give

I+ |T]e”

i, 2.46
= [T .-

IL

This complex equation (which could also be derived from (2.25) with £ = 0) can be
reduced to two real equations by writing I and z;, in terms of their real and imaginary parts.
LetI’ =T, 4+ jI';,and z; = r; + jxp. Then (2.46) can be written as
“ -+ rr) -k r'rl
(1=T,)—jIy
The real and imaginary parts of this equation can be found by multiplying the numerator
and denominator by the complex conjugate of the denominator to give

rp -+ jxn =

| -T2 -T2
="' I (2.47a)
-+
25 2.47b)
Ao AT -
Rearranging (2.47) gives
. 2 : I 2
(r, . ) Flbe ( ) . (2.48a)
|+ 7 I+rg

i 1 5% 1 52
(r, =1+ (l",- - —) == (-—) X (2.48b)
XL XL

which are seen to represent two families of circles in the I',, I'; plane. Resistance circles are
defined by (2.48a), and reactance circles are defined by (2.48b). For example, the r; = 1
circle has its center at I', = (0.5, I'; = 0, and has a radius of ().5, and so passes through
the center of the Smith chart. All of the resistance circles of (2.48a) have centers on the
horizontal I'; = () axis, and pass through the I' = 1 point on the right-hand side of the chart.
The centers of all of the reactance circles of (2.48b) lie on the vertical I', = 1 line (off the
chart), and these circles also pass through the I' = 1 point. The resistance and reactance
circles are orthogonal.

Besides being useful for transforming between reflection coefficient and normalized
impedance. the Smith chart can also be used to graphically solve the transmission line
impedance equation of (2.25). In normalized form, this equation can be written as

1 + Pe2/Pt

= (2.49)

Zin
where I is the reflection coefficient at the load, and ¢ is the (positive) length of transmission
line. We see that (2.49) is of the same form as (2.46), differing only by the phase angles of
the I terms. Thus, if we have plotted the reflection coefficient I' = |I"|e/? at the load, the
normalized input impedance seen looking into a length £ of transmission line terminates
with z; can be found by rotating the point clockwise an amount 28¢ (subtracting 24¢
from @) around the center of the chart. The radius remains constant, since |I'| does not
change with position along the line.

To facilitate such rotations, the Smith chart has scales around its periphery calibrated in
electrical wavelengths, both toward and away from the “generator” (the direction away from
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the load). These scales are relative, so only the difference in wavelengths between two points
on the Smith chart is meaningful. The scales cover a range of 0 to 0.5 wavelengths, which
reflects the fact that the Smith chart automatically includes the periodicity of transmission
line phenomenon. Thus, a line of length A/2 (or any multiple) requires arotation of 24¢ = 27
around the center of the chart to transform an impedance from the load end to the input,
bringing the point back to its original position.

Basic Smith Chart Operations

We can best illustrate the use of the Smith chart for basic transmission line problems
through the use of an example.

N, EXAMPLE 2.2 USE OF THE SMITH CHART FOR BASIC
-v))))) TRANSMISSION LINE CALCULATIONS

A load impedance of 130 + j90 © terminates a 50 € transmission line that is 0.3 A
long. Find the reflection coefficient at the load, the reflection coefficient at the
input to the line. the SWR on the line, the return loss. and the impedance seen at
the input to the line. (This is the same problem as Example 2.1.)

Solution
We begin by calculating the normalized load impedance:

Z, 130+ j90
~Zo 50

This point can be plotted on the Smith chart, as shown in Figure 2.9, Using a
compass and the voltage reflection coefficient magnitude scale that is printed on
most Smith charts, the reflection coefficient magnitude at the load can be read
as [I'| = 0.60. This same compass setting can then be applied to the standing
wave ratio (SWR) scale to read SWR = 3.98. and to the return loss scale (in
dB) to read RL = 4.4 dB. The angle of the reflection coefficient can be found
by drawing a radial line from the center of the chart through the load impedance
point, and reading the reflection coefficient angle on the outer scale of the chart as
21.8". Note that these values are in close agreement with the results calculated in
Example 2.1.

Now draw a circle with center at the center of the chart, and passing through the
load impedance point. This circle is called a constant SWR circle. and it represents
the locus of all possible values of reflection coefficient (and impedance) that the
load can present along the line. Read the reference position of the load on the
wavelengths-toward-generator (WTG) scale as 0.2204. Moving along the line a
distance of .34 toward the generator brings us to the position 0.2204 + 0.3% =
0.520x on the WTG scale. Because the reflection coefficient repeats every 0.54. this
is equivalent to 0.020X. Drawing a radial line at this position gives the normalized
input impedance at the intersection of this line and the SWR circle of zj, = (.255 +
J0O.117. Then the input impedance at the input to the line is

21 =2.60+ j1.80

Zin = Zozin = S0(0.255 + j0.117) = 12.7 + j5.8Q.

The reflection coefficient at the input to the line still has a magnitude of |I'| =
0.60: the phase is read from the radial line at the input position and the phase
scale as 165.8°. These values are in close agreement with the results calculated in
Example 2.1. @]
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FIGURE 2.9  The Smith chart for Example 2.2.

Using The Admittance Smith Chart

Another powerful feature of the Smith chart is that it can be used with normalized
admittances in the same way it is used with normalized impedances, and can be used to
convert between impedance and admittance. The latter technique is based on the fact that,
in normalized form, the input impedance of a load z; connected to a A/4 line is, from (2.32),

Zin= l/zp, (2.50)

which has the effect of converting a normalized impedance to a normalized admittance.

Since a complete revolution around the Smith chart corresponds to a line length of A /2,
a A/4 transformation is equivalent to rotating the chart by 1807; this is also equivalent to
imaging a given impedance (or admittance) point across the center of the chart to obtain
the corresponding admittance (or impedance) point.

The same circles can be used for either impedance or admittance, for both real and
imaginary parts. As labeled on the chart, however, a positive imaginary part corresponds
to an inductive reactance, or a capacitive susceptance, while a negative imaginary part
corresponds to a capacitive reactance, or an inductive susceptance.

In this way. a single Smith chart can be used for both impedance and admittance
calculations during the solution of a given problem. At different stages of the solution, the



46 Chapter 2: Transmission Lines and Microwave Networks

chart may be used as either an impedance Smith chart or an admittance Smith chart. This
is often required when solving impedance matching problems with stub tuners.

EXAMPLE 2.3 SMITH CHART OPERATIONS USING ADMITTANCES

.o))))) A load of Z; = 100+ j50 €2 terminates a 50 € transmission line. What are the
load admittance and the input admittance if the line is 0.154 long?

Solution
The normalized load impedance is z; = (100 + j50)/50 = 2 + j1. We initially
consider the Smith chart as an impedance chart, and plot the normalized load
impedance point and draw the SWR circle through this point. Next, we convert
to admittance by rotating /4 around the chart (or simply by drawing a straight
line through z; and the center of the chart to intersect the other side of the SWR
circle). The chart is now considered as an admittance chart, and the normalized
load admittance can be read as v, = 0.40 — j0.20. (See Figure 2.10.)

To transform the load admittance to the input end of the line, first read the
reference position of the load admittance on the wavelengths-toward-generator
scale as 0.4634. Adding the 0.15% length of the line brings us to a position of
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FIGURE 2.10 The Smith chart for Example 2.3.
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0.6134, or 0.1134. The intersection of a radial line at this position with the SWR
circle gives the normalized input admittance as v, = 0.60+ j0.66. Then the actual
input admittance is

0.60 + j0.66

Yio = yYin/Zo =
Yin/ Zo )

=0.0120 + j0.01328S. O

MICROWAVE NETWORK ANALYSIS

In this section we show how the familiar concepts of low-frequency circuit analysis can
be extended to characterize RF and microwave circuits and networks. We have seen earlier
in this chapter that the distributed nature of a circuit becomes important at high frequencies,
when physical dimensions become an appreciable fraction of the electrical wavelength. In
addition, it is helpful to be able to view voltages and currents in terms of incident, reflected,
and transmitted waves,

We begin by discussing the use of impedance and admittance matrices to describe
the relationship between the total voltages and currents defined at the terminal ports of an
arbitrary N-port microwave network, and show how these quantities can be decomposed
into the sum of incident and reflected waves. This leads to a discussion of the scattering
matrix, which gives an alternative characterization of an N-port network in terms of incident
and reflected waves. The scattering matrix is central to modern RF and microwave circuit
design, and will be used extensively in later chapters on amplifier and oscillator design.
Finally, we will describe the transmission, or ABCD, matrix.

Impedance and Admittance Matrices

Consider the arbitrary N -port microwave network shown in Figure 2.11, where incident
and reflected voltages, V," and V,", and incident and reflected currents, I and I, . are
defined at each port. Also at each port is defined a terminal plane, t,, to provide a phase
reference point for the voltages and currents. From (2.14), we can write the total voltage
and currents at the nth port as

V=V W, (2.51a)
L= I (2.51b)
since the terminal plane corresponds to z = 0 in (2.14).

The impedance matrix [Z] of the microwave network then relates these voltages and
currents:

Vi [Zh Ziw -+ - Zwy I
Vi Zn : I
LY ] LZm - - - - Zyv ]| LI

or in symbolic form as

[V]=[Zll1]. (2.52)
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FIGURE 2.11 Photograph of the HP8720B vector network analyzer. This instrument can measure
two-port scattering parameters up to 20 GHz, with built-in error correction, a syn-
thesized source, and a color display. (Courtesy of Hewlett-Packard Company, Santa
Rosa, CA.)

Similarly, we can define an admittance matrix [ Y] as

1] Yy Y ooo- Yw-‘ [V, ]
I ¥y = »ow o= Vi
| v \_YNI - o= - Yyn | LW

or in symbolic form as
] =I[YI[V] (g

Of course, the [Z] and [¥ ] matrices are the inverse of each other:

[
in
]

[Y]1=[z]"" (2.54)

Note that both the [Z] and [Y] matrices relate the total port voltages and currents,
From (2.52), we can see that a given matrix element Z;; can be found in terms of port
voltages and currents as

Zij=— . (2.55)

J i =0tork=j

In words, (2.55) states that the ijth element of the impedance matrix can be found by
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driving port j with a current /;, open-circuiting all other ports (so that 1, = 0 for k # 0),
and measuring the open-circuit voltage at port i. Thus. Z;; is the input impedance seen
looking into port i when all other ports are open-circuited, and Z;; is the transfer impedance
between ports i and j when all other ports are open-circuited. For this reason, [ Z] is often
called the open-circuit impedance matrix of the network.,

Similarly, from (2.53), the i jth element of the admittance matrix can be found as

Yij = — (2.56)
=0fork# j

which states that ¥;; can be determined by driving port j with a voltage V., short-circuiting
all other ports (so that Vi = 0 for k # 0), and measuring the short-circuit current at port ¢.
The [ Y] matrix is often called the short-circuit admittance matrix of the network.

In general, each element of the [Z] or [¥Y] matrix may be complex. For an N-port
network, the impedance and admittance matrices are N x N in size, so there are 2N?
independent quantities or degrees of freedom for an arbitrary N-port network. In practice,
however, many networks are either reciprocal or lossless, or both. If the network is reci-
procal (not containing any nonreciprocal media or elements such as ferrites, plasmas, or
active devices), it can be shown that the impedance and admittance matrices are symmetric,
sothat Z;; = Zj; and Yy = Y, [1]. If the network is lossless, so that no power is dissipated
in the network. then we will show that all the Z;; and Y;; elements are purely imaginary
quantities. Either of these special cases serves to reduce the number of independent quantities
or degrees of freedom that an N-port network may have,

The pure imaginary property of impedance and admittance matrix elements for lossless
networks can be easily derived. If the network is lossless, the net real power delivered (o
the network must be zero. Thus Re{ Py} = 0, where

I I I
Pyg = EIV.I'U]‘ = E(I.Z.I[fl)’[t'l" = Yz

e

1 _ .
= ;”]Z1|1F+J'|Z|gfg'+I;:_Zufr-i--”] (2.57)

N

N
= Z i I znm i

- n=l m=

In this expression we have used the result from matrix algebra that ([A][B]) = [B]'[A),
where [A]" is the transpose of [A].

Since the port currents /, are independent in (2.57), we can set all /,s equal to zero
except for I,,. Then setting the real part of (2.57) to zero gives

Re(l i Zynl) = |1 P Re( Zym) = 0,
or
Re{Z ;. }=0. (2.58)
Next, let all port currents be zero except for I, and [,. Then (2.57) reduces to
Re{(1, 1) + 1, I 2y} = 0,

since Z, = Zyy for a reciprocal network. But (/,1,) + I,,1;) is a purely real quantity
which is, in general, nonzero. Thus we must have that

Re{Z,;] = 0. (2.59)
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Equations (2.58) and (2.59) together imply that Re{Z,,,} = 0 for any m. n. Thus the
impedance matrix of a lossless network has purely imaginary elements. The reader can
verify that the same conclusion applies to the admittance matrix as well.

The Scattering Matrix

Like the impedance or admittance matrix for an N-port network, the scattering matrix
also provides a complete description of the network as seen at its N ports. While the
impedance and admittance matrices relate the total voltages and currents at the ports, the
scattering matrix relates the voltage waves incident on the ports to those reflected from
the ports. The scattering matrix representation is especially useful at high frequencies where
it is difficult to measure total voltages and currents, but easier to measure incident and
reflected voltages. For some components and circuits, the scattering matrix elements can
be calculated using network analysis techniques. Otherwise, the scattering parameters can
be measured directly with a vector network analyzer (see photo in Figure 2.11). Once the
scattering parameters of the network are known, conversion to other matrix representations
can be performed, if needed.

Again consider the N-port network of Figure 2.12, where V" is the amplitude of the
voltage wave incident at port n, and V,~ is the amplitude of the voltage wave reflected from
port n. The scattering matrix, or [S] matrix, is defined in relation to these incident and
reflected voltage waves as

Vil [Su S-S | v
Vy s T . V;
LVl LSwio - - - Saw || Viv |
or
(V71 =(SIV"] (2.60)

WS W=l

FIGURE 2.12  An arbitrary N-port microwave network.
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A particular element of the [ S] matrix can be found as

V-
Sip = : (2.61)
V.f V' =0forksj
In words. (2.61) says that §;; is found by driving port j with an incident wave of voltage
‘lf';."'. and measuring the reflected wave amplitude, V;”, coming out of port i. The incident
waves on all ports except the jth port are set to zero, which means that all ports should
be terminated with matched loads to avoid reflections from the connections (which would
amount to incident waves). Thus, S;; is the reflection coefficient seen looking into port i
when all other ports are terminated in matched loads, and S;; is the transmission coefficient
from port j to port i when all other ports are terminated in matched loads.

We can now show how the [§] matrix can be determined from the [Z] or [¥] matrix,
and vice versa. First, we assume that the characteristic impedances of all ports are identical,
a simplifying assumption that can be alleviated with generalized scattering parameters [1].
Then, for further convenience, we can set Zy = 1. The total voltage and current at the nth
port can be written as in (2.51):

Vo=V, +V,, (2.62a)
L=+, =Vt-V-. (2.62b)
Using the definition of [Z] from (2.52) with (2.62) gives
(ZI) = [Z[IV = [ZIIV ] =[V]I=[VF ]I+ [V
which can be rewritten as
(Z]+ [NVl =(Z]1=[unv™], (2.63)
where [U] is the unit, or identity, matrix defined as
10 0 0 0 0]
0 1 .
= o B (2.64)
Comparing (2.63) to (2.60) shows that
[S1= (121 + [UD'(1Z] = (), (2.65)

which gives the scattering matrix in terms of the impedance matrix. Note that for the special
case of a one-port network, (2.65) reduces to
zn — 1
S g=—;
” Zn+1
in agreement with the result for the reflection coefficient seen looking into a load with a
normalized input impedance of zy;.
To find [Z] in terms of [ §], rewrite (2.65) as [Z][S] + [U][S] = [Z] — [U]. and solve
for [Z] to give

(Z] = (U] = [SH' (U +[S]). (2.66)
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FIGURE 2.13 A matched 3 dB attenuator with a 50  characteristic impedance.

Recall that we have normalized the impedance to unity, so (2.66) must be multiplied by Z,
to recover the actual impedance. Further properties of the [§] matrix, such as the symmetry
of [ 8] for reciprocal networks, and the fact that [S] is unitary for lossless networks, are
derived in reference [1].

EXAMPLE 24 EVALUATION OF SCATTERING PARAMETERS
“})>>> Find the S parameters of the matched 3 dB attenuator circuit shown in Figure 2.13.

Solution
From (2.61), §;; can be found as the reflection coefficient seen at port 1 when port
2 is terminated in a matched load (Zy = 50 Q): |4
. {1
Syyp= E'_ — l““’] _Zw — 2%
+ - A | 3
Vi Vi =0 ) Zm] —=Zy Ziyon port 2

where Zf;) is the input impedance seen at port 1 when port 2 is terminated with a
matched load. With reference to Figure 2.13, this can be calculated as
8.56 + [141.8(8.56 + 50)]

AR =508,
" (141.8 + 8.56 + 50)

50 S1; = 0. By symmetry of the circuit, we also have $3; = 0. The fact that §)) =
Sy3 = 0 means that the input port is matched when the output port is terminated
in a matched load, and vice versa. Such a network is referred to as matched, but it
is important to realize that the ports may be mismatched if the other ports are not
terminated in matched loads.

S5y can be found by applying an incident wave at port 1, V|", and measuring
the outcoming wave at port 2. V. This is equivalent to the transmission coefficient
from port 1 to port 2:

From the fact that 8§y = S2 = 0, we know that V" = () when port 2 is terminated
in Zy =50 €, and that ;" = 0. In this case we then have that V;" = V| and
V,” = V4. So by applying a voltage V/ at port 1 and using voltage division twice
we can find the voltage across the 50 € load resistor at port 2:

1.44 50
V., =WVa= V|( 4 )( ) = 0.707V,,

= 41.44 4+ 8.56 / \ 50 4 8.56

where 41.44 Q is the resistance resulting from the parallel combination of the 50 €
load and the 8.56 € and 141.8 Q resistors in series, Thus, Sj; = 83 = 0.707.
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FIGURE 2.14 (a) A two-port network: (b) a cascade connection of two-port networks.

If the input power is | V7| /2Z, then the output power is

~12 2 4 2 2
L T 21 L e
27y 22  2Zy  4Zy
which is one-half of the input power, as expected for a 3 dB attenuator. @)

The Transmission (ABCD) Matrix

The Z. Y, and § parameter representations can be used to characterize a microwave
network with an arbitrary number of ports, but in practice many microwave networks consist
of a cascade connection of two or more two-port networks. In this case it is convenient to
define a 2 x 2 transmission, or ABCD, matrix, for each two-port network. We will then see
that the ABCD matrix of the cascade connection of two or more two-port networks can be
easily found by multiplying the ABCD matrices of the individual two-ports.

The ABCD matrix is defined for a two-port network in terms of the total voltages and
currents as shown in Figure 2.14a and the following relations between these quantities:

Vi =AVa+ BD,
I =CVz + DI,

Vi A BV .

[h]_[c D][h]. 2.67)

It is important to note from Figure 2. 14a that a change in the sign convention of /5 has been
made from our previous definitions, which had /; as the current lowing into port 2. The
convention that /; flows out of port 2 will be used when dealing with ABCD matrices so
that in a cascade network /; will be the same current that flows into the adjacent network, as
shown in Figure 2.14b. Then the left-hand side of (2.67) represents the voltage and current at

port | of the network, while the right-hand side of (2.67) represents the voltage and current
at port 2.

or in matrix form as
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In the cascade connection of two two-port networks shown in Figure 2.14b, we have

that
Vl . A] B| Vj ‘
[“]_{Cl Dl][h] (2.684)
Va _ A By Vi
["J_[Cz Dz][fa]' (2.68b)

Substituting (2.68b) into (2.68a) gives

vl — Al BI Az Bz V3
[h}_]:a DI][Cg Dz][h]' (2.69)

which shows that the ABCD matrix of the cascade connection of the two networks is equal
to the product of the ABCD matrices representing the individual two-ports. Note that the
order of multiplication of the matrices must be the same as the order in which the networks
are arranged. since matrix multiplication is not commutative.

The usefulness of the ABCD matrix representation is further enhanced by the fact that
a library of ABCD matrices for elementary two-port networks can be compiled, and applied
in building-block fashion to more complicated microwave networks that consist of cascades
of these simpler two-ports. Table 2.1 lists a number of useful two-port networks and their
ABCD matrices.

The ABCD parameters can be derived in terms of the Z, ¥, or § parameters for a given
network. To establish conversion from the impedance matrix, for example, we first change
the sign convention for the current at port 2 in the impedance matrix definition of (2.52) to
be consistent with that of the ABCD matrix:

V; = f|21] = IQZ|2, (’2.70&}
Vo= 1122 — I Zn. (2.70Db)
Then from (2.67) we have that
PR . (2.71a)
Valpeo NZn  Za' )
Vi L7, —hZ /
g _hZu—-hZp —Z“—" 7
15 Va=( I Va=0) I Vo=
Zn ZnZon — 2122y
=7 —Zyp=——— 2.71b
i 12 Zon ( )
1 1 |
C=— = = . 2.71c
Va Fi=0 VAT 2 ( )
1 IEV AT YA Z
D= _l _ 2 ?.2/ 21 _ -E {2"?'1{1:]
Iz | yy—0 I Zoi

If the network is reciprocal, then Z,; = Zj2. and (2.71) can be used to show that AD -

BE€=1.
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2.4 Impedance Matching

TABLE 2.1 The ABCD Parameters of Some Useful Two-Port Circuits

55

Circuit ABCD Parameters
© Z 9]
A=i B:Z
=it D=1
o O
o | o
A=1 B=10
Y
=V D=1
o I o
o o
28 A=cos I B = jZ, sin Bl
. > 4 C = jY,sin Bl D =cos B
{
o N:1 o
A=N B=0
C=0 p=1
o o)
g h —— Amie 22 B=dl
Y, ¥, Y3 Y’,’s
! 2 Y\ ¥ Y
R [
C=Y +VYa+ D=1+—
o I l O e Y3 ¥y
o— £ Zy —o
‘ * i ] Bt b+ B2
|
) Z3
Z 1 Zy
f C=— D=1+-=
o I o Zy 23

IMPEDANCE MATCHING

The basic idea of impedance matching, or tuning, is illustrated in Figure 2,15, which
shows an impedance matching network placed between a load impedance and a transmission
line. The matching network is ideally lossless, to avoid unnecessary loss of power, and is
usually designed so that the impedance seen looking into the matching network is Zg. the
characteristic impedance of the feed line. Then reflections are eliminated on the transmission
line to the left of the matching network, although there will be multiple reflections between

the matching network and the load.

Impedance matching is important in wireless systems for several reasons:

Z"I]
— ]

Matching
network

Load
7

FIGURE 2.15 A lossless network matching an arbitrary load impedance to a transmission line.
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e Maximum power is delivered to a load when it is matched to the feed line (assuming
the generator is matched).
o Impedance matching sensitive receiver circuitry (antenna, low-noise amplifier, mixer)
improves the signal-to-noise ratio of the system, and hence the maximum data rate,
e Impedance matching in transmitting system minimizes the required RF power. thus
minimizing prime power (maximizing battery life, reducing risk of radiation hazard),

As long as the load impedance. Z; . has a positive real part, a matching network can always
be found. Many types of matching networks are available for practical use [1]. but here we
will limit our discussion to the design and performance of a few basic matching methods.
These include the quarter-wave transformer, lumped element matching networks, and single-
stub tuning. These techniques will be used in later chapters when we discuss the design of.
amplifiers and oscillators.

The Quarter-Wave Transformer

As mentioned in Section 2.1, the quarter-wave transformer is a simple and useful
circuit for matching a real load impedance to a transmission line. An additional feature
of the quarter- wave transformer is that it can be extended to multisection designs in g
methodical manner, to provide broader bandwidth [1]. If only a narrow band impedance:
match is required, a single-section transformer may suffice. Although the quarter-wave
transformer can only match a real load impedance, a complex load impedance can always:
be transformed to a real impedance by using an appropriate length of transmission line
between the load and the transformer.

Here we will analyze the frequency performance of the quarter-wave transformer as
a function of load mismatch. The circuit is shown in Figure 2.16, where the characteristic
impedance of the matching section is given by

Z= \/rZoZL, (2.72)

where Z; is a real load impedance. At the design frequency, fi, the electrical length of the
matching section is Ay/4, but at other frequencies the electrical length is different, and g/
perfect match is no longer obtained. We will now derive an approximate expression for the
mismatch versus frequency.

The input impedance seen looking into the matching section is

Zy + jZqt

T = Tjer——"y
m ]Z|+_}.ZL-'

Q.73

where t = tan S = tan#, and ¢ = ¢ = 7 /2 at the design center frequency, fy. The re
flection coefficient seen at the input to the transformer is then
Zin—2y  Zi{Zp—Zp) + ji(Z] — ZvZy)

r‘ el p— - 5 .
Zin+Zo ZUZL+ Zo)+ ji(Z] + ZoZy)

(2.74)

Zy Z Zy (real)

Sy

FIGURE 2.16 A quarter-wave malching transformer. ¢ = A /4 at the design frequency fj.
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Since, from (2.72), Z} = ZoZ;, (2.74) reduces to
Zr —Zy

I = : : (2.75)
Zp+ Zo+ J2UN ZoZy
Then the reflection coefficient magnitude is
Ir| = |Z1 — Zy
VZL+ ZoP + 47202,
1
N ZL+ 20 (Z1 = 207 + 4221 — Zo)?

(2.76)

|

T T 4Z0ZL[(Z1 — Zo) + 8ZoZ 112 /(Z1, — Zo)
1

1+ [82020/2 — 2o7] sec?8

since 1 + 4% = 1 + tan® @ = sec? 4.
Now if we assume that the frequency is near the design frequency, fy, then ¢ = io/4
and 6 = /2. Then sec> A > 1, and (2.76) simplifies to

|Zy — Zol
2V ZoZs

This result gives the approximate mismatch of the quarter-wave transformer near the design
frequency, as shown in Figure 2.17.

If we set a maximum value, I",,, of the reflection coefficient magnitude that can be
tolerated, then we can define the bandwidth of the matching transformer as

T = [cos @], for & near 7 /2. (2.77)

AG = 2(% . 9) 2.78)

since the response of (2.76) is symmetric about # = /2, and I"' =1T",, at § =6, and at
f = m — 6,,. Equating [',, to the exact expression for reflection coefficient magnitude in
(2.76) allows us to solve for 6,,:

1 2./ T, 3
=== + | =——secf | ,
Zi. —Zy

(T[4

m

0, T =gl

FIGURE 2.17 Approximate behavior of the reflection coefficient magnitude for a quarter-wave

transformer operating near its design frequency.
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0.75
ZilZy=4,025

0.25

2417 =2,0.5

0 ' '
0 | 2

Ho f

FIGURE 2.18 Reflection coefficient magnitude versus normalized frequency for a quarter-wave
transformer with various load mismatches.

or

2y ZUZL

cos by, = l (2.79)

Hi
If we assume TEM lines, then we have that

o=pt=2L 0 7
v, 4fo  2fy
where v}, is the phase velocity for the transmission line. Therefore the fractional bandwidth
is, from (2.79),

AF _2fo=fud _y_ 2n _,_ ¥
Jo fn fo T
g 2Ny E )
=2 ——cos” [ L ] (2.80)
bid J1=T2 12y = Zyl

Fractional bandwidth is usually expressed as a percentage., 100Af/fy %. Note that the
bandwidth of the transformer increases as Z; becomes closer to Zy (a less mismatched
load). Figure 2.18 shows a plot of the reflection coefficient magnitude versus normalized
frequency for various mismatched loads. Note the trend of increased bandwidth for smaller
load mismatch.

Matching Using L-Sections

Another popular type of impedance matching network is the L-section. which uses
two reactive elements to match an arbitrary load impedance to a transmission line. This
technique is used extensively in lower frequency circuit design, and has the advantage over
the quarter-wave transformer in that the load impedance need not be real.

There are two possible configurations for an L-Section matching network, as shown
in Figure 2.19. If the normalized load impedance, z; = Z; /Zy. is inside the 1 + jx circle
on the Smith chart, then the circuit of Figure 2.19a should be used. If the normalized load
impedance is outside the 1+ jx circle, the circuit of Figure 2.19b should be used. The
1 4 jx circle is the resistance circle on the impedance Smith chart for which r = 1.
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= | [ X

() (b}

FIGURE 2.19 L-section matching networks. (a) Network for Z; inside the 1 + jx circle. (b) Net-

work for Z; outside the 1+ jux circle.

In either of the configurations of Figure 2.19, the reactive elements may be either
inductive or capacitive, depending on the load impedance, If the frequency is relatively
low and/or the circuit size is electrically small, lumped-element inductors or capacitors
can be used. At higher frequencies, however, it is difficult to implement lumped element
capacitors and inductors, so in this case tuning methods using transmission line stubs may
be preferred.

While analytic solutions for the required values of series reactance jX and shunt sus-
ceptance jB are available [1], it is often convenient in practice to use the Smith chart to find
these values for a given load impedance. This procedure is best illustrated with an example.

Design an L-section matching network to match a series RC load having an

EXAMPLE 2.5 L-SECTION IMPEDANCE MATCHING
" :)))))
impedance Z; = 200 — j100 €. to a 100 2 line, at a frequency of 500 MHz.

Solution
The normalized load impedanceis z; = 2 — j1, which s plotted on the Smith chart
of Figure 2.20a. This point is inside the 1 + jx circle, so we will use the matching
circuit of Figure 2.19a. Since the first element from the load is a shunt susceptance,
it is helpful to convert to a load admittance y; by drawing the SWR circle through
the load impedance, and a straight line from the load through the center of the
chart, as shown in Figure 2.20a. Now, after we add the shunt susceptance jB and
convert back to impedance, we want to be on the | + jx circle, so that we can add
a series reactance jX to match the load. This means that the shunt susceptance jB
mustmove us from y; tothe | + jx circle on the admittance Smith chart. Thus, we
construct the rotated 1 4 jx circle as shown in Figure 2.20a (center at 0.333), Then
we see that adding a normalized susceptance of jb = j0.3 will move us along a
constant conductance circle to y = 0.4 4 j0.5 (this choice is the shortest distance
from y; to the shifted | + jx circle). Converting back to impedance leaves us at
z = 1 — j1.2,indicating that the addition of a series reactance x = j1.2 will bring
us to the center of the chart, to complete the solution.

The matching circuit thus consists of a shunt capacitor and a series inductor,
as shown in Figure 2.20b. At a frequency of f = 500 MHz, the shunt capacitor
has a value of

G =092 pF,
InfZ P

and the series inductor has a value of

.
=225 _aggam.
2
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- Rotated | + jxcirele
on admittance chart

ta)

3K.8 nH
Y

Z=100Q  092pF == S 2, =200 /100 Q

g

Solution |

o
o

Zy=1000 46.1 nH > Z; =200 —/100 Q

"

Solution 2
(b

FIGURE 2.20 Solution to Example 2.5. (a) The Smith chart for the L-section matching networks, (b)
The two possible L-section matching circuits. (¢) Reflection coefficient magnitu
versus frequency for the matching circuits of (b).
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FIGURE 2.20 (Continued )

There is also a second solution for this tuning problem. If instead of adding

a shunt susceptance of b = 0.3, we use a shunt susceptance of b = —0.7, we will
move to a point on the lower half of the rotated 1 4 jx circle, to vy = 0.4 — jO.5.
Then converting to impedance and adding a series reactance of x = —1.2 leads to

a match as well. This matching circuit is also shown in Figure 2.20b, and is seen
to have the positions of the inductor and capacitor reversed from the first matching
network. At a frequency of 500 MHz, the capacitor for this solution has a value of

= ——— =2.61pF,
2rfxZy ¥
while the inductor has a value of
_ZO
L= = 46.1 nH.
2nfb &

Figure 2.20c shows the resulting reflection coefficient magnitudes versus fre-
quency for these two matching networks, assuming that the load impedance of
Zp =200 — 7100 €2 at 500 MHz consists of a 200 £ resistor and a 3.18 pF ca-
pacitor in series, There is not a substantial difference in bandwidth for these two
solutions, but in other cases the difference may be more significant. O

Single-Stub Tuning

Finally, we consider a matching technique that uses a single open-circuited or short-
circuited length of transmission line (a stub), connected either in parallel or in series with
the transmission feed line at a certain distance from the load, as shown in Figure 2.21. Such
@ tuning circuit is convenient from a microwave fabrication aspect, since lumped elements
are not required, and the necessary transmission lines can easily be etched in planar circuit
form. Single-stub tuning networks are used extensively in transistor amplifier and oscillator
circuits, as discussed in Chapters 6 and 8.

In single-stub tuning the distance, &, from the load to the stub position, and the value of
the shunt susceptance (or series reactance) provided by the stub, are adjustable parameters.
These two degrees of freedom can be used to match an arbitrary load impedance to any feed
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Yy ’—> ¥y

Open or
shorted |
stub

(a)

(o]

% 1 4=

Open or
shorted
stub

(b

FIGURE 2.21 Single-stub tuning circuits. (a) Shunt stub. (b} Series stub.

line (assuming the load impedance has a positive real part). For the shunt-stub case, the basic
idea is to select d so that the admittance, Y, seen looking into the line at distance d from
the load is of the form ¥, + j B, where Yy = 1/Zg. Then the stub susceptance is chosen as
— j B, resulting in a matched condition, For the series-stub case, the distance d is selected
so that the impedance, Z. seen looking into the line at a distance  from the load is of the
form Zy + jX. Then the stub reactance is chosen as — j X, resulting in a matched condition.

As discussed in Section 2.1, the proper length of an open- or short-circuited transmis-
sion line can provide any desired value of reactance or susceptance. For a given susceptance
or reactance, the difference in lengths of an open- or short-circuited stub is 4 /4. For trans-
mission line media such as microstrip or stripline, open-circuited stubs are easier to fabricate
since a short-circuiting via hole is not required.

Analytic solutions for both shunt- and series-stub tuning circuits can be derived [1], but
Smith chart solutions are usually accurate enough for practical work, and have the advantage
of being quick and providing an intuitive view of the matching procedure. We will illustrate
the method with an example for a shunt stub tuner.

) > EXAMPLE 2.6 SINGLE-STUB SHUNT TUNING
o ))) >>

For a load impedance Z; = 20 — j 15 €2, design two single-stub shunt tuning net-
works to match this load to a 50 €2 line.

Solution
Begin by plotting the normalized load impedance, z; = 0.4 — j0.3, as shown on
the Smith chart of Figure 2.22. Since we are using a shunt stub, it is convenient
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FIGURE 2.22 The Smith chart solution for Example 2.6.

to work with an admittance chart, and so we convert to a load admittance of
ve = 1.6 + j1.2by plotting a SWR circle through the load impedance and drawing
a diameter. Note that the SWR circle intersects the 1 4 jb circle at two points,
denoted by y; and ys in Figure 2.22. Thus the distance d, from the load to the stub,
is given by either of these two intersections. Reading the WTG scale, we have

dy =0.336 —0.196 = 0.140%,
dr = (0.5 —0.196) + 0.164 = 0.468..

Of course. there are an infinite number of distances, d. on the SWR circle that
intersect the 1 + jb circle. Usually, however, it is desired to keep the matching
stub as close as possible to the load to improve the bandwidth of the match, and to
minimize losses caused by a possibly large standing wave ratio on the line between
the stub and the load.

At the two intersection points, the normalized admittances are

v =1— j1.061,
y2 =1+ j1.061.
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Thus, the first tuning solution requires a stub with a susceptance of j1.061. The
length of an open-circuited stub that gives this susceptance can be found on the
Smith chart by starting at y = 0 (the open circuit) and moving along the outer edge
of the chart (since g = () toward the generator to the j1.061 point. The required
stub length is then £; = 0.1304. Similarly, the required open-circuit stub length
for the second solution is £2 = 0.3704, O
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PROBLEMS

2.1

2.2

23

24

25

2.6

|
A transmission line has the following per unit length parameters: L = 0.3 pH/m, € =450 pF/m,
R=5%/m, and G =0.01 S/m. Calculate the complex propagation constant and characteristic |
impedance of this line at 880 MHz. Recalculate these quantities in the absence of loss (R = G =0),
A lossless transmission line of length 0.34 is terminated with a load impedance as shown helow. Find
the reflection coellicient at the load, the SWR on the line, the return loss, and the input impedance to
the line.

1=0.32
o

Zymp> Z;=758 2| z,=40+j20Q
o

A lossless transmission line of characteristic impedance Z; is terminated with a load impedance of
150 Q. If the SWR on the line is measured to be 1.6, find the two possible values for Z;.

A wireless transmitter is connected to an antenna having an input impedance of 80 + 740 £ through
a4 50 € coaxial cable. I the 50 € transmitter can deliver 30 W when connected to a matched load,
how much power is delivered to the antenna?

(a) Calculate the SWR and return loss for reflection coefficient magnitudes of 0.01, 0.1, 0.25, 0.5,
and 0.75. (b) Calculate the SWR and reflection coefficient magnitudes for return losses of 1 dB, 3 dB,
10 dB, 20 dB, and 30 dB.

The transmission line circuit shown below has V, = 10 v rms, Z, =50 2, Z; =50 @, Z; =60 -
J40 €, and £ = 0.62. Compute the power delivered to the load using three different techniques:

(a) find I and compute

P = (ﬁ)liu —|]”|1)'
7 \2/ z :

(b) find Z;, and compute

v, [
P =|—*—| RelZ,}; and
L= 1F 5 7, | Rl
{c) find V; and compute
Ve |*
Pr = |—| RelZ.}
3 ‘Z;_ {Z.}
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Discuss the rationale for each of these methods. Which of these methods can be used if the line is not
lossless?

+
Vi =y z ov.sz

For a purely reactive load impedance of the form Z, = jX, show that the reflection coefficient
magnitude |I"| is always unity. Assume the characteristic impedance is real.

Consider the transmission line circuit shown below. Compute the incident power, the reflected
power, and the power transmitted into the infinite 75 € line. Show that power conservation is
satisfied.

50 € A I

M

10V Zo=500Q Z,=75Q

o]
[«

P —> —= P
l'url:!' .

trans

A load impedance of Z; = 60 + j30 8 is to be matched 1o a Z; = 50 @ line using a length ¢ of
lossless line of characteristic impedance Z,. Find values for the required (real) Z, and (.

For the circuit shown below, find the power delivered to the load and the power dissipated in the
generator impedance for a load impedance of Z; = 30 + j40 Q. What value of load impedance will
result in maximum power delivered to the load? What is this power?

20430 Q2 < 0.7

10V Zy=500Q %

(o]

Consider the transmission line circuit below. Use the Smith chart to find the SWR on the line. the
return loss, the reflection coefficient at the load, the load admittance. the input impedance to the line,
the distance from the load to the first voltage minimum, and the distance from the load to the first
voltage maximum.

=084
s

T > Z,=50Q Z, =70 +j40 Q
O

Use the Smith chart to find the shortest lengths of a short-circuited 50 2 transmission line stub to give
the following input impedance:

(a) Zin =10

(b) Zjy = 00

(€) Zin = 7SO Q
(d) Zyy = —jS0 €

Repeat Problem 2.12 for an open-circuited length of 50 €2 line.
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2.14 Derive the [Z] and [ Y] matrices for the two-port networks shown below.

o Za 0 Yy Yy =
| | |

Port : Port Port Port
I Zy Zy 2 1 2 1
o 1 I 5 o I o
(a) (h)

2.15 A particular two-port network is driven at both ports so that the port voltages and currents have the
following values:

Vi = 5.0 /45° 1y =0.1 745
Vo = 3.0 £—45° =02 90°

I
: : o ; I
Determine the incident and reflected voltages at both ports, if the characteristic impedance is 50 €, |
2.16 A particular two-port network is driven at port | with a matched generator, and terminated at port2 =
with a matched load. If the total voltage and current at port | are measured tobe V) = [.314 £12.4°V
and /| = 15.4 /—21.5° mA, and the total voltage at port 2 is measured to be ¥, = 0.8 290° V. If the
characteristic impedance is 50 €, find §;; and §;,.
2.17 A three-port network has the scattering matrix given helow.
(a) What is the return loss at cach port, when all other ports are terminated in matched loads?
{b) What is the insertion loss and phase between ports 2 and 3, when all ports are matched?
(¢) What is the return loss at port | when ports 2 and 3 are terminated in short circuits?

0.1 £90° 04 £180" 0.4 L180°
[§]=| 0.4 £180° 0.2 L0 0.6 245
0.4 £180° 0.6 245" 0.2 07
2.18 Verify the ABCD parameters for the first three networks shown in Table 2.1.
2.19 Derive expressions giving the impedance matrix parameters in terms of the ABCD parameters.

2.20 Use ABCD matrices to find the voltage V; across the load resistor in the circuit shown below.

500 300
50 ¢

21 A4
+
) Zo=500  V, S2,=1000

2.21 Design a quarter-wave transformer to match a 350 £ load to a 100 € line. What is the percent
bandwidth for this matching circuit, for an SWR < 27

2.22 In the circuit shown below, a load impedance of Z; = 1004 j200 €2 is to be matched to a 50 € feed
line, using a length, ¢, of lossless transmission line of characteristic impedance. Z;. Find Z, and .
Determine. in general, what type of load impedances can be matched using such a circuit.

10y 20°

Z,=50Q Zi Z, = 1004200 Q

2.23 Designtwo lossless L-section matching networks for each of the following normalized load impedances;

(a)zp =0.5— j0.8
(b)z, = 1.6+ j0O.8
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2.24 A load impedance of Z; = 100 — j150 £ is to be matched to a 50 § line using a single shunt-stub
tuner. Find two solutions using open-circuited stubs. '

2.25 Repeat Problem 2.24 using short-circuited stubs.

2.26 A load impedance of Z;, = 15 + jS0 Q is to be matched to a 100 € line using a single series stub
tuner. Find two solutions using open-circuited stubs.

2.27 Repeat Problem 2.26 using short-circuited stubs.
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Noise and Distortion in
Microwave Systems

The effect of noise is one of the most important considerations when evaluating the perfor-
mance of wireless systems because noise ultimately determines the threshold for the minimum
signal level that can be reliably detected by a receiver. Noise is a random process associated
with a variety of sources, including thermal noise generated by RF components and devices,
noise generated by the atmosphere and interstellar radiation, and man-made interference. Noise
is omnipresent in RF and microwave systems, with noise power being introduced through the
receive antenna from the external environment, as well as generated internally by the receiver
circuitry, In our later study of modulation methods, we will see that parameters such as signal-
to-noise ratio, bit error rates, dynamic range, and the minimum detectable signal level are all
directly dependent on noise effects.

Our objective in this chapter is to present a quantitative overview of noise and its character-
ization in RF and microwave systems. Since noise is a random process, we begin with a review
of random variables and associated techniques for the mathematical treatment of noise and its
effects. Next we discuss the physical basis and a model for thermal noise sources, followed
by an application to basic threshold detection of binary signals in the presence of noise. The
noise power generated by passive and active RF components and devices can be characterized
equivalently by either noise temperature or noise figure, and these parameters are discussed in
Section 3.4, followed by the propagation and accumulation of noise power through a cascade
of two-port networks. A more detailed treatment of the noise figure of general passive networks
is given in Section 3.5. Finally, we consider the problem of dynamic range and signal distortion
in general nonlinear systems. These effects are important for large signal levels in mixers and
amplifiers, and can thus be viewed as complementary to the effect of noise, which is an issue
for small signal levels.

68
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REVIEW OF RANDOM PROCESSES

In this section we review some basic principles, definitions, and techniques of random
processes that we will need in our study of noise and its effects in wireless communications
systems. These include basic probability, random variables, probability density functions,
cumulative distribution functions, autocorrelation, power spectral density, and expected
values. We assume the reader has had a beginning course in random variables, and so will
not require a full exposition of the subject. References [1]-[3] should be useful for a more
thorough discussion of the required concepts.

Probability and Random Variables

Probability is the likelihood of the occurrence of a particular event, and is written as
P{event}. The probability of an event is a numerical value between zero and unity, where
zero implies the event will never occur, and unity implies the event will always occur.
Probability events may include the occurrence of an equality, such as P{x = 5}, or events
related to a range of values, such as P{x < 5}.

In contrast to the actual terminology. a random variable is neither random nor a variable,
but is a function that maps sample values from a random event or process into real numbers.
Random variables may be used for both discrete and continuous processes. Examples of
discrete processes include tossing coins and dice, counting pedestrians crossing a street,
and the occurrence of errors in the transmission of data. Continuous random variables can
be used for modeling smoothly varying real quantities such as temperature, noise voltage,
and received signal amplitude or phase. We will be primarily concerned with continuous
random variables.

Consider a continuous random variable X, representing a random process with real
continuous sample values x, where —00 < x < oo. Since the random variable X may
assume any one of an uncountably infinite number of values, the probability that X is
exactly equal to a specific value, xy, must be zero. Thus, P{X = xy} = (. On the other
hand, the probability that X is less than a specific value of x may be greater than zero:
0 < P{X < xg} < 1. In the limit as xy — 00, P{X < xy} — 1, as the event becomes a
certainty.

We will not adopt any particular notation for random variables in this book, as it should
be clear from the context which variables are random and which are deterministic. In most
cases, the only random variables we will encounter will be associated with noise voltages,
and typically denoted as v, (1), or n(1).

The Cumulative Distribution Function

The cumulative distribution function (CDF), Fy(x), of the random variable X is defined
as the probability that X is less than or equal to a particular value, x. Thus

Fx(x) = P{X < x}. (3.1)

It can be shown that the cumulative distribution function satisfies the following prop-
erties:

(1) Fx(x)=0 (3.2a)
(2) Fx(oo)=1 (3.2b)
(3) Fy(—o0)=0 (3.2¢)

(4) Fyl(x)) < Fy(xa)ifx; < x2 (3.2d)
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The last property is a statement that the cumulative distribution function is a monotonic
(nondecreasing) function. The definition in (3.1) shows that the result of (3.2d) is equivalent
to the statement that

Plx) <x = xal = Fy(xa) — Fx(x).

The Probability Density Function

The probability density function (PDF), f,(x), of a random variable X is defined as the
derivative of the CDF:
dFy(x)
Ty 3.3)
dx
Since the CDF is monotonically nondecreasing. fy(x) = 0 for all x. The PDF may contain
delta functions, as in the case of discrete random variables, for which the CDF is a “stair-
step” type of function.
By the fundamental theorem of calculus, (3.3) can be inverted to give the following
useful result;

X3

Plx) < X £ xa} = Fy(x2) — Fx(x)) = [ h Sfxlx)dx. (3.4)

vy

In addition, since F'(—o0) = 0 from (3.2¢), (3.4) reduces to the following result that directly
relates the CDF to the PDF:

II"
Fx(x):j Fylu) du. (3.5)

(=4}

Finally, because F(oc)=1 from (3.2b), (3.5) leads to the fact that the total area under a
probability density function is unity:

f Six)dx = 1. (3.6)

o0

These results can be extended to cases of two random variables. Thus, the joint CDF
associated with random variables X and Y is defined as

Fxy(x,y)=P{X <xand ¥ < y}, (3.7

Then the joint PDF is calculated as

2

Finr, 9) = ——Fiyx, 3). 39
dxoy
Similar to the result of (3.4), the probability of x and v both occurring in given ranges is
found from
A2 ¥2
Plxy <X <xyandy <Y < »} = f f Sy, y)ydxdy. (3.9)
X ¥

The individual probability density functions for X and ¥ can be recovered from the joint
PDF by integration over one of the variables:

Fi(y) :f Soulx, v)dx, (3.10a)
fr (x)= j _f\'y tx, '\’} d)' (3. lU’b]
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For the special case where the random variables X and Y are statistically independent, the
joint PDF is the product of the PDFs of X and ¥

Lo, ¥) = filx) fu(y). (3.11)

Some Important Probability Density Functions

For reference, we list here some of the probability density functions that we will be
using in this book. The most basic is the PDF of a uniform distribution, defined as a constant
over a finite range of the independent variable:

|
filx) = —— for a<x<bh. (3.12a)
bh—a

The constant 1/(b—a) is chosen to properly normalize the PDF according to (3.6). Many
random variables have gaussian statistics, with the general gaussian PDF given by

— (=) /22

f\ (J\} =

e for —00 < X < 09, (3.12h)

2mol

where m is the mean of the distribution, and o2 is the variance.
In our study of fading and digital modulation we will encounter the Rayleigh PDF, given
by

r 2
fr)=—e " for 0<r <o (3.12¢)
o2

The reader can verify that these each satisfy the normalization condition of (3.6).

Expected Values

Since random variables are nondeterministic. we cannot predict with certainty the value
of a particular sample from a random event or process, but instead must rely on statistical
averages such as the mean, variance, and standard deviation. We denote the expected value
of the random variable X as ¥, or E{X}. The expected value is also sometimes called the
mean, or average value. For discrete random variables the expected value is given as the
sum of the N possible samples, x;, weighted by the probabilities of the occurrence of that
sample:

N
i=E{X}=) xP{X=x) (3.13a)
i=1
This result directly generalizes to the case of continuous random variables:
%= E(X) = f xfolx) dx. (3.13b)

o
It is easy to show that the process of taking the expected value of a random variable is a
linear operation, and that the following two properties therefore apply (assume X and Y are
random variables, with ¢ a constant):
(1) E{cX}=cE{X} (3.14a)
(2) E{X+Y})=E{X}+ E{Y). (3.14b)

We will also often be interested in finding the expected value of a function of a random
variable. If we have a random variable x, and a function y = g(x) that maps values from x
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to a new random variable y, then the expected value of y can be found for the discrete case

as
N
¥ =E{y} = Elg) =Y glx)Plx = x). (3.15a)
i=]
For the case of a continuous random variable this becomes
[ ]
y=E{y}= E{gx)} = f glx) fox)dx. (3.15b)
L =3

The result of (3.15b) can be used to find higher-order statistical averages. such as the nth
moment of the random variable, X:

¥ = E{x"} = f X fu(x)dx. (3.16)

The variance, a*, of the random variable X is found by calculating the second moment of
X after subtracting the mean of X:

6= E{x —3)) = / .tx — %) folx)dx

2

= E{x* =253 + 7%} = x2 = 5% (3.17)

The root-mean-square (rms) value of the distribution is o, the square root of the variance. If
a particular zero-mean random voltage is represented by the random variable x, the power
delivered to a | § load by this voltage source will be equal to the variance of x.

The expected value of a function of two random variables involves the joint PDF:

gy, y) = Efglx, y)} = f gx, ¥) faylx, y)dxdy. (3.18)
This result can be applied to the product of two random variables, x and y, by letting the
function g(x, y) = xy. For the special case of independent random variables the joint PDF
is the product of the individual PDFs by (3.11), s0 (3.18) reduces to

Xy = Elxy) = f xj_'\.(.r).dxf yhily)dy = E{x]E[y}. (3.19)

el > o0

Autocorrelation and Power Spectral Density

An important characteristic of both deterministic and random signals is how rapidly
their sample values vary with time. This characteristic can be quantified with the autocor-
relation function, defined for a complex deterministic signal, x(1), as the time average of
the product of the conjugate of x(r) and a time-shifted version, x(r + 7):

o0
R(r}:[ x'(x(t+1)dr. (3.20)
-0
It can be shown that R(0) = R(7), and R(t) = R(—1). Also. R(0) is the normalized energy
of the signal.
For stationary random processes, such as noise processes. the autocorrelation function
is defined as

R(t) = E{x*()x(t + 1)). (3.21)

Because of the relation between the time variation of a signal and its frequency spectrum,
we can also characterize the variation of random signals by examining the spectra of the
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autocorrelation function in the frequency domain. For stationary random processes, the
power spectral density (PSD), S(w), is defined as the Fourier transform of the autocorrelation
function:

o0
S(w) = f R(t)e 7“dr. (3.22a)

o

The inverse transform can be used to find the autocorrelation from a known PSD:
] & -
R(t)= — f S(w)e!”" dw. (3.22b)
2 J

For a noise voltage, the power spectral density represents the noise power density in the
spectral (frequency) domain, assuming a 1 € load resistor. If v(r) represents the noise
voltage, the power delivered to a 1 €2 load can be found as

— 2 1 = = :
P = v3(1) = E{v(1)) = R(0) = —f Sulw)dw = f S,2af)df W, (3.23)
21 J - —00
where S,(w) is the PSD of v(r). The last equality follows from a change of variable with
@ = 27 f. Writing this integral in terms of f (in Hz) is convenient because S, (&) has
dimension W/Hz, and therefore appears as a power density relative to frequency in Hertz.

Consider a sinusoidal voltage source, Vi cos wpt, which is randomly sampled in
time to form a random process v(#) = V cos 6, where = wpr is a random variable
representing the sample time. Assume ¢ is uniformly distributed over the interval
() <6 < 2, since the cosine function is periodic with period 2. Find the mean of
the sample voltages, the average power delivered to a | € load, the autocorrelation
function of the random process v(1), and the power spectral density.

) > EXAMPLE 3.1 OPERATIONS WITH RANDOM VARIABLES
u)))))

Solution
The PDF for the random variable 8 is f(8) = 5=, for 0 < @ < 2. Then we can
calculate the average voltage as

2 2
v(r) = E{u(t)} = f (1) fy(0)db = if cosf db = 0.
0 2 Jo

The average power delivered to a | €2 load is given by the variance of v(¢):

;5 2 5 VZ 2 5 V2
Pr =v3() = E{v (1)} = [ ve(r) fu(6)dd = if cos*Ado = L W.
Jo 2 Jy 2

The autocorrelation can be calculated using (3.21):

R,(t) = E{v(t)v(t + 1)} = Vn:E{cos wqt cos wyll + 1)}

VE 2 V2 n

= cos f cos(f + wgt) dl = = [cos wyt + cos(28 + wyT)| db
2 0 47t 0

= Vuz COS wT

Note that R, (0)= ‘Vo2 /2. which is the variance of v(r). The power spectral density
is found using (3.22a):

5..(&?) - f R“(r){,—;:nr dr = _Iﬂ [e—;(w—wn)t i, g-_,l{w—d—cm}r] dr
Ve .
= H,}” [6(w — o) + 8w + wp)]




74 Chapter 3: Noise and Distortion in Microwave Systems

3.2

This result shows that power is concentrated at o = «y and its image at —ay. The
total power can also be calculated by integrating the PSD over frequency, as in
(3.23):

oo 2 oo VE
P =— Si(w)ydw = -+ f [8(w — wy) + 8w + wy)] dw = -
27 J 4 ) 2
This result agrees with the earlier result obtained as the variance using the
PDF. O
THERMAL NOISE

Thermal noise, also known as Nyquist, or Johnson, noise, is caused by the random
motion of charge carriers, and is the most prevalent type of noise encountered in RF and
microwave systems. Thermal noise is generated in any passive circuit element that containg
loss, such as resistors, lossy transmission lines, and other lossy components. It can also be
generated by atmospheric attenuation and interstellar background radiation, which similarly
involve random motion of thermally excited charges. Other sources of noise include shot
noise, due to the random motion of charge carriers in electron tubes and solid-state devices;
flicker noise, also occurring in solid-sate devices and vacuum tubes; plasma noise, caused
by random motions of charged particles in an ionized gas or sparking electrical contacts;
and quantum noise, resulting from the quantized nature of charge carriers and photons,
Although these other types of noise differ from thermal noise in terms of their origin, their
characteristics are similar enough that they can generally be treated in the same way as
thermal noise.

Noise Voltage and Power

Figure 3.1a shows a resistor of value R at temperature 7' degrees Kelvin (K). The
electrons in the resistor are in random motion. with a kinetic energy that is proportional
to the temperature, 7. These random motions produce small random voltage fluctuations
across the terminals of the resistor, us illustrated in Figure 3.1b. The mean value of this
voltage is zero, but its nonzero rms value in a narrow frequency bandwidth B is given by

V, = V4kTBR, (3.24)
where
k= 1.380 x 10~ J/K is Boltzmann’s constant

T is the temperature, in degrees Kelvin (K)
B is the bandwidth, in Hz
R is the resistance, in 2

P ulr)

| R | (1)

(&) (h)

FIGURE 3.1  (a) A resistor at temperature T produces the noise voltage v,(r). (b) The random

noise vollage generated by a resistor at temperature 7',




3.2 Thermal Noise 75

R R
¥ Ideal
4 bandpass
v Vv v filter R

. b&?

FIGURE 3.2  (a) The Thevenin equivalent circuit for a noisy resistor. (b) Maximum power transfer

of noise power from a noisy resistor to a load over a bandwidth B,

The result in (3.24) is known as the Rayleigh—Jeans approximation, and is valid for fre-
quencies up through the microwave band [4].

The noisy resistor can be modeled using a Thevenin equivalent circuit as an ideal
(noiseless) resistor with a voltage generator to represent the noise voltage, as shown in
Figure 3.2a. The available noise power is defined as the maximum power that can be
delivered from the noise source to a load resistor. As shown in Figure 3.2b, maximum power
transfer occurs when the load is conjugately matched to the source. Then the available noise

power can be calculated as
W\l _ Vi

;%_(2) L=t g, (3.25)
where V, is the rms noise voltage of the resistor. This is a fundamental result that is useful in a
wide variety of problems involving noise. Note that the noise power decreases as the system
bandwidth decrease. This implies that systems with smaller bandwidths collect less noise
power. Also note that noise power decreases as temperature decreases, which implies that
internally generated noise effects can be reduced by cooling a system to low temperatures.
Finally, note that the noise power of (3.25) depends on absolute bandwidth, but not on the
center frequency of the band. Since thermal noise power is independent of frequency, it is
referred to as white noise, because of the analogy with white light and its makeup of all
other visible light frequencies. It has been found experimentally, and verified by quantum
mechanics, that thermal noise is independent of {requency for 0 < f < 1000 GHz.

The noise power of (3.25) can also be represented in terms of the power spectral density
according to (3.23). Since the power given by (3.25) is independent of frequency, the power
spectral density must also be independent of frequency, and so we have that,

Pn kT L]

Sp(w) = 2B = > =5 (3.26)
This is known as the two-sided power spectral density of thermal noise, meaning that the
frequency range from —B to B (Hz) is included in the integration of (3.23). This is the
conventional definition as used in communication systems work. The notation defined in
(3.26), where ng/2 = kT /2 is the two-sided power spectral density for white noise, will be
used throughout this book. (Note that ng is a constant, with the subscript “zero’, This should
not be confused with the notation n,(t), which we will often use to denote a noise output
signal. The subscript for this latter notation is “oh’, and will always be written as a function
of time.)

Since the power spectral density of thermal noise is constant with frequency, its auto-
correlation must be a delta function according to (3.22b):

Rery= = [ M pmiwt gy = Msry (327)
T)—zn _m?_(’ .m_2 ). 3

By the central limit theorem, the probability density function of white noise is gaussian
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FIGURE 3.3  Circuit for Example 3.2,

with zero mean:

I it
faln) = he“*‘ e, (3.28)

where o2 is the variance of the gaussian noise. Thermal noise having a zero mean gaussian
PDF is known as white gaussian noise. Since the variance of the sum of two independent
random variables is the sum of the individual variances (see Problem 3.5), and the variance is
equivalent to power delivered to a 1 §2 load, the noise powers generated by two independent
noise sources add in a common load. This is in contrast to the case of deterministic sources,
where voltages add.

Note that (3.27) is not completely consistent with (3.28), since (3.27) indicates that R(0),
the variance of white noise, is infinite while (3.28) implies a finite variance. This problem
arises because of the mathematical assumption that white noise has a constant power spectral
density, and therefore infinite power. In fact, as we discussed earlier, thermal noise has a
constant PSD only over a finite, but very wide. frequency band. We can resolve this issue
if we understand our use of the concept of white noise to actually mean a bandlimited PSD
having a finite frequency range, but broader than the system bandwidth with which we are
working.

Two noisy resistors, Ry and R,, at temperature 7', are shown in Figure 3.3, Calculate
the available noise power from these sources by considering the individual noise
power from each resistor separately. Next, consider the resistors as equivalent to a
single resistor of value Ry 4 Rs. and verify that the same available noise power is
obtained. Assume a bandwidth B for the system.

) > EXAMPLE 3.2 CALCULATION OF NOISE POWER
n))))

Solution
The equivalent noise voltage from each resistor is found from (3.24):

Vil = V4kTBR,
Via = V4KTBR,.

For maximum power transfer, the load resistance should be Ry + R,. Then the
noise power delivered to the load from each noise source is

B :(ﬁ)z | _ KIBR,
" 2 ) Ri+R R +R

(v,,z)"" I kTBR:
Prr2: ey = .
2 R+ Ry R+ R,
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So the total available noise power is
P, = Py + Py = kTB.

Considering the two resistors as a single resistor of value Ry + R,, with a load
resistance of R + Ry, gives an available noise power of

P, = kTB,

in agreement with the first result, O

NOISE IN LINEAR SYSTEMS

In a wireless radio receiver, both desired signals and undesired noise pass through
various stages, such as RF amplifiers, filters, and mixers. These functions generally alter
the statistical properties of the noise, and so it is useful to study these effects by considering
the general case of transmission of noise through a linear system. We then consider some
important special cases, such as filters and integrators, and the nonlinear situation where
noise undergoes frequency conversion by mixing.

Autocorrelation and Power Spectral Density in Linear Systems

In the case of deterministic signals, we can find the response of a linear time-invariant
system to an input excitation in the time domain by using convolution with the impulse
response of the system, or in the frequency domain by using the transfer function of the
system. Similar results apply to wide-sense stationary random processes, in terms of either
the autocorrelation function or the power spectral density.

Consider the linear time-invariant system shown in Figure 3.4, where the input random
process, x(), has an autocorrelation R, (1) and power spectral density S, (), and the output
random process, (1), has an autocorrelation R, (7) and power spectral density S, (w). If the
impulse response of the system is A(r). we can calculate the output response as

y(r) = f h(u)x(r — u)du. (3.29a)
-0
Similarly, a time-shifted version of y(¢) is
faa)

wWi+1)= f hv)x(t +1 —v)duv. (3.29b)

So the autocorrelation of y(r) can be found as

o o
Ry(t) = E{ytyt + 1)) = f / h(Oh()E{x(t —w)x(t + 1 — )} du dv

=5 o>
= f f h(h(0)R (v +u —v)dudu. (3.30)

x(1) | A yin
Ry(7), Sjw) | Hw)| R (7). §;{w)

FIGURE 3.4 A linear system with an impulse response h(1) and transfer function H (w). The input

is a random process x(r), having autocorrelation R.(r) and PSD S, (). The output
random process is (), having autocorrelation K, (7) and PSD §,(w).
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TR T I
—_— T — —_— T — —_— s —
NS YL L
AH(f) AH( H(f)
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Low-pass High-pass Bandpass

FIGURE 3.5  System symbols and frequency responses for low-pass, high-pass. and band-pass
filters,

This result shows that the autocorrelation of the output is given by the double convolution of
the autocorrelation of the input with the impulse response: Ry(t) = h(7) @ h(—1) @ R (7).
We can derive the equivalent result in terms of power spectral density by taking the Fourier
transform of both sides of (3.30), in view of (3.22a):

f R (t)e ¥ dr = f f h('u]h(v)f- Rt 4+u—ve ' drdudv.
- =00 W =0 -

o0 o

Now perform a change of variable to @ = 7 4 u — v. s0 that dee = dt. Then we obtain

e v oo (s =] .
/ R_\‘(r_)c’_*""”dr=f h(u)ef““"f h(u)e‘-"""“f R (w)e ™ dadudv.

o0 o oo o

Since H(w) is the Fourier transform of A(1)

H(w) = f hitye '“'dt, (3.31)

)

the above simplifies to the following important result:
Sy(@) = |H(@)|*Su(@). (3.32)

We will now demonstrate the utility of these results with several applications.

Gaussian White Noise through an Ideal Low-pass Filter

As we will see in Chapters 5,9, and 10, filters play an important role in wireless receivers
and transmitters, The main function of a filter is Lo provide frequency selecrivity, by allowing
a certain range of frequencies to pass, while blocking other frequencies. Figure 3.5 shows
the symbols and associated idealized frequency responses for low-pass, high-pass, and
bandpass filters. Here we examine the effect of an ideal low-pass filter on noise.

Figure 3.6 shows white noise passing through a low-pass filter. The filter has a transfer
function, H( f), as shown, with a cutoff frequency of Af. Note that the transfer function
is defined for both positive and negative frequency, since we will be using the two-sided
power spectral density. Our usual notation will be to use lowercase letters, such as #;(r) and

AH(f)
1

i) X . (1} I |
N! H{J : N{J . T

-Af af

1

FIGURE 3.6  White noise passing through an ideal low-pass filter, and the transfer function of the
filter.
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n,(1), for noise and signal voltages in the time domain, and capital letters, such as N; and
N,. for average powers of noise and signals.

Since the input noise is white, the two-sided power spectral density of the input noise
is constant, as given in (3.26):

S (f) =3 (all) (333)
Then from (3.32) the output power spectral density is given by
% for|f| < Af

Su(F)=|H(OPS(f) =3 2 . (3.34)
0 for|f| > Af

The output noise power is then
Nl] — (ZAf)Su;,(f) = Afﬂ-q}. (335J

We see that the output noise power is proportional to the filter bandwidth.

Gaussian White Noise through an ldeal Integrator

As we will see in Chapter 9, integrators are critical components for the detection and
demodulation of digital signals, Here we derive an expression for the output noise power
from an integrator with white noise input: this result will be used later for the derivation of
error probabilities for digital modulation in Chapter 9.

Figure 3.7 shows a noise signal, n;(¢), applied to the input of an ideal integrator. The
output noise signal is n,(7). The output of the integrator is the value of the integral. at time
t =T, of the input signal. We need to find the average power of the output noise.

The transfer function of the integration operation is

H(w) = 'L(l —gmioty, (3.36)
Jw

where 7 is the integration interval time. Evaluating the magnitude squared of (3.36) gives

(1 —e=*T)(1 —e/*T) 2 —2coswT
w? a w?
_4sifwT/2  sifnfT (sin nfT )1

w? T (wf)? ' 7fT

|H(w)|* = H(w)H* (w) =

(3.37)

since w =2 f.
If we assume white noise at the input, with S, (@) = ny/2, then the output noise power
can be calculated using (3.23) and (3.32) (o give

oo 2 ol 2
Nf,=[ %W(fﬂzdf:”nrf (bm.rrfT) df

2 oo N T
T % /s 2 T
< Bl f T2) ax =" (3.38)
2 . X 2
ﬂf(f) T ! H”“)
> [( )t
N, j; ‘ N,

FIGURE 3.7  White noise passing through an ideal integrator.
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nir) vit)

coslwy! + )

FIGURE 3.8  White noise passing through a mixer with a local oscillator signal, cos(aqgf + ).

The integral was evaluated by using a change of variables, x =n f T, with dx = wTdf,
and a standard integral listed in Appendix B.

Mixing of Noise

One of the common functions of a receiver is to perform frequency conversion, by
mixing a signal with a local oscillator to shift the original signal spectrum up or down in
frequency. When noise coexists with the signal, the noise spectrum will also be shifted in
frequency. While we will study mixers in detail in Chapter 7, here we idealize the function
of mixing by considering it as a process of multiplication of the input signal by a local
oscillator signal, as shown in Figure 3.8. We wish to find the average noise power of the
output signal.

We assume that n(¢) is a bandlimited white gaussian noise signal with variance, or
average power, o> = E{n’(r)}. The local oscillator signal is given by cos(wot +6), where
the phase, #, is a random variable uniformly distributed on the interval 0 <6 <27, and is
independent of n(r). The output of the idealized mixer is

u(t) = n(rycos (wpt + 0). (3.39)
The average output power from the mixer can then be calculated as the variance of v(r):

N, = E{v*()} = E{n*(t)cos*(wgt + 0)} = E{n’(t)) E{cos*(wpt + @)}

] B 2

T
=2 | cosHwsr +6)dd = = (3.40)
2JT {1 2

This result shows that mixing reduces the average noise power by half. In this case, the
factor of one-half is due to the ensemble averaging of the cos® wyi term over the range of
random phase.

If we now consider a deterministic local oscillator signal of the form cos wqr (without
a random phase), the variance of the output signal becomes

E(vi(n)) = E{n*(1) cos” ayt} = o* cos® wyt. (3.41)

The last result follows because the cos® wyf term is unaffected by the expected value
operator, since it is no longer a random variable. (In addition, v(r) is no longer stationary,
and therefore does not have an autocorrelation function or power spectral density.) The
variance of the output signal is now a function of time, and represents the instantaneous.
power of the output signal. To find the time-average output power, we must take the time-
average of the variance found in (3.41):

] T ? wp 2 5 -, 0.2
Ny = ?'/; Ef{v(t)} dt = 5 ./; o~ cos” ayldr = - (3.42

since T=1/f =27 /wy. We see that the same average output power is obtained whethe
the averaging is over the ensemble phase variation, or over time.
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EXAMPLE 3.3 MIXING NOISE
”))D) Consider the complex mixing product x(t) = n(r)e/™’, formed by mixing noise

voltage n(t) with a complex exponential. If the autocorrelation and PSD of n(r)
are R,(t) and S,(w), find the autocorrelation and PSD of x(r).

Solution
Using the definition of autocorrelation for random processes given in (3.21) we
have

R(t) = E{,r*(t)x(,r + ‘r)] -— E{n(r)e—jmﬂ:n(r + r)e-"“”’“*”}
= E{n(t)n(t +T)}ejrmr = R,,(‘C)f.’j"m

Note that x(r) is still a stationary process, since it has a proper autocorrelation
function. From (3.22a) the power spectral density is

o0 [

Silw) = f R.t)e 1™"dr = f Ry (t)e /=0 dr = §, (& — wp),
— 0 bl v 7

where the last result follows by replacing @ with @ —ay in S,(w) =

[T Ru(m)e 4o dr. O

Narrowband Representation of Noise

In many receiver circuits, signals and noise are passed through a bandpass filter. In
this case, it becomes possible to represent the noise in a form that is more convenient for
analysis. This is called the narrowband representation of noise, a result that will be very
useful in Chapter 9 when analyzing the effect of noise on the demodulation of signals.

Figure 3.9 shows gaussian white noise passing through a bandpass filter with a center
frequency wp and bandwidth Aw. If the two-sided power spectral density of the input noise
is 71y /2. then the PSD of the output noise, n(t), is as shown in the figure. If Aw < wy, then
n(t) can be represented as

n(t) = x(1)cos wyt + y(r)sinwpl, (3.43)

where x(1) and y(t) are random processes, but are slowly varying due to the narrow band-
width of the filter. To show that the above representation is valid, consider the circuit of
Figure 3.10. which can be used to generate x(7) and y(1). Here the noise n(t) is divided and
mixed separately with 2 cos wyr and 2 sin gz, which produces the following results:

2n(t) cos wot = 2x(r) cos® wyt + 2y(t) sin wot cos wyt
= x(t) + x(1)cos 2wt + y(1)sin 2wyt
2n(r) sin gt = 2x(1) cos eyt sin gt + 2y(1) sin’ oyt

= v(t) — y(t)cos 2ayt + x(1)sin 2wp!.

S,lw)
Aw Aw
. - iy _—

White 35
noise N nit)

| TN e

L .
ik

FIGURE 3.9  While noise passing through a bandpass filter. and the power spectral density of the
output noise.
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2 cos wyt
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2 sin wyt

FIGURE 3.10 Circuit to generale low-pass noise x(1) and y(r) from a bandpass noise source n(f).

After low-pass filtering with a low-pass cutoff frequency of f. = Aw /4, only the x(r) and
y(t) terms will remain in the above results. Thus the output noises x(7) and y(r) are limited
in bandwidth to Aw/2, and can be viewed as the bandpass noise at ey shifted down to zero
frequency. Since x(f) and y(t) represent the in-phase and quadrature components of n(r),
as indicated in the phasor diagram of Figure 3.10, (3.43) is also known as the quadrature
representation of narrowband noise. We now find the statistics of x(¢) and y(r), and show
that these gaussian random processes have zero mean, the same variance as n(r), and are
uncorrelated. We will also find the power spectral densities of x(r) and y(7).
Since E{n(r)} =0, we have from (3.43) that

E{n(t)y =0 = E{x(t)}coswgt + E{y(1}} sinawyt.

Since cos wyt and sin wyt vary differently with time, we must have
E{x(t)} = E{y()} =0. (3.44)
Next, we evaluate the autocorrelation of n(r) using (3.43):

R,(t) = E{n(t)n(t + 1)}
= E{[x(1) cos wyt -+ v(r) sinawgt |[x(f 4+ ) cos wp(t + 7) + y(f + 7) sinwolr + 7))}
= Ry(t)coswyt cos wy(t + T) + Ryy(T)cos wpt sin el + 1)
+ Ry, (1) sinwgt cos wylf + ) + Ry(T) sinwgf sin wy(f + 1)

where Ry, (t)= E{x(t)y(t 4+ 1)} and Ry (r)= E{y(1)x(r+ 1)} are the cross-correlation
functions of x(r) and v(1). Using standard identities to expand the trigonometric products.
gives the following:

Ry(7) = JR(T)[cos wyT + cosan (21 + )]
+ 1R (D[sinwpt + sinwy(21 + 7)) :
. _ (3.45)
+ 3 Ry (D[ —sin ot + sin wy(2t + )]
+ %R“.(r)[cos anT — cos wy(2t + 1)].

Because n(t) is a stationary process, its autocorrelation must be a function only of 7, and
cannot vary with 7. Thus the coefficients of cos wy(2f + 7) and sin wg(21 + ) must vanish,
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FIGURE 3.11 Power spectral density of x(¢) and y(r).
This gives
Ri(t) = Ry(1) (3.46a)
Riy(1) = =Ry (1), (3.46b)
and then (3.45) reduces to
R,(1) = Ry (r)coswyt + Ryy(T)sinwyt = R, (T)coswyt — Ry (T)sinwgt. (3.47)

This result shows that n(r), x(7). and y(t) all have the same variance, since R,(0) = R, (0) =
R.(0).

We can also find R, (t) directly by evaluating the inverse Fourier transform of §,(w).
which is shown in Figure 3.9. Since R, () is real, and symmetric about w = (), we have

1 oo ) 1 o0 no w4 Aieo /2
Rt) = —f Splw)e! " dw = ~—f Su(w)coswt dw = — coswt dw
2n —00 2r 0 27 k= Ao /2

ny . Aw , Aw ny . Awrt
= ——| sin + — |t —sin — — 7| =—sin coswpt. (3.48
’frf[ 1 (wﬁ 2 ) (wﬂ 2 ) ] T 2 e 2]

Comparing (3.48) to (3.47) shows that

A
Ru(1) = Ry(1) = — sin —r (3.49a)
' T
R,r_\'(rj = R)'x(r) = 0. (3.49b)

The fact that Ry (7)= 0 implies that x(¢) and v(¢) are statistically independent. Finally, we
can find the PSD of x(t) and y(r) by taking the Fourier transform of R.(t):

o0 ny for|w| < Aw/2

Re(t)e /"dr = I (3.50)

Su() = Sy(w) =
wlw) ¥ (w) f 0 for || = Aw/2

-0
where the required Fourier transform may be found in Appendix C. This power spectral
density is shown in Figure 3.11, and can be viewed as the bandlimited PSD of n(r) shifted
up and down in frequency by the amount awy, and low-pass filtered. Note that the peak value
of the PSD of x(z) and y(r) is ny, twice that of the PSD of n(r).

BASIC THRESHOLD DETECTION

We now have enough background in the topics of noise and systems to discuss an
application to basic threshold detection. Threshold detection is relevant to most digital
modulation schemes, and so we will see this topic again in more detail in Chapter 9. Here
we evaluate the probability of error or a simple binary communications channel.
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s+ nil)

FIGURE 3.12 Input signal and noise voltage for a basic threshold detection system.

Consider a communications system where binary signals are transmitted in the presence
of bandlimited white gaussian noise. Thus, the received signal, r(f), can be written as the
transmitted signal voltage, s(r), plus a noise voltage, n(r):

r(t)y = stt)+ n(r) (3.51)

where n(r) has zero mean and variance 0. A sketch of a possible received voltage is shown
in Figure 3.12.

When a binary “17 is transmitted the signaling voltage will be s(r) = vy, and when a
binary 0" is transmitted we will have s(r) = 0. The receiver must be designed to process
the received voltage, and detect whether a 17 or a 0" has been transmitted. In the absence
of noise we can simply sample the receive voltage and determine whether it is above or
below a threshold level. In this case, the logical choice for a threshold voltage would be
vp/2. so that if 7(r) > vo/2 the receiver would detect a *1,” and if r(t) < vp/2 the receiver
would detect a “0." This detection process can be implemented using a simple sampler and
comparator circuit. In practical receivers threshold detection could incorporate matched
filters or integrators to minimize the effect of noise, but here we consider only the sampling
of the received signal at its maximum or minimum point.

Because the possible noise voltage amplitude ranges from —oc to 00, the received
signal may sometimes be less than the threshold when a *1" has been sent. and may be
greater than the threshold when a “0™ has been sent. Either of these cases will result i
detection error, In fact, there are four detection possibilities, as listed in Table 3.1.

Probability of Error

We can now find the probability of error for threshold detection. We define P!V as the
probability of an error in detection when a binary “1" has been transmitted, and P\ as the
probability of an error when a binary “0” has been sent. Knowing these two probabilities
then defines the likelihood of all the outcomes in Table 3.1, since the probability of a correci
outcome is 1 — (probability of an error).

TABLE 3.1 Possible Outcomes of Threshold Detection

Transmitted rit)=vy/2 Detection Correct
Binary Data s(r) ? Outcome Detection
0 0 no 0 yes!
0 0 yes I error
| Vg yes I yes!
| Vi no 0 error
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When a binary “1" is transmitted, a detection error will occur if the received signal
and noise is less than the threshold level at the sampling time. For a threshold of vy/2, the
probability of this event is

P:” = P{."(I) =y +nlt) < U[}/z}

vy /2 v /2 e.—{r—un}l,err2
= fr(rydr = ——dr (3.52)
./:.x. —00 £ 323"1'0‘2

where we have used (3.1), (3.5), and the gaussian probability density function given in

(3.12b). Since n(1) is gaussian with zero mean, the receive signal r(¢) is also gaussian, but

with a mean value of vy when a binary 17 is being transmitted. The expression in (3.52)

can be reduced to a standard form by using the change of variable x = (vy —r)/ V202.
Then we have

p— 1 fw e dx (3.53)
‘ \/E &0
where the lower limit is
Vi )
X = _ (3.54)
24202

The integral occurring in (3.53) is related to the complementary error function, writlen as
2 P

erfe(x) = s/’_f?f; e " du. (3.55)

Details on properties of the complementary error function, including an algorithm for

calculating erfe(x), can be found in Appendix D. Using the definition of (3.55) allows
(3.53) to be written as

PO = %e;fr(xu_l = %er_fc(z U;UE), (3.56)
which is our final expression for P{!. By a similar analysis we can find P, the probability
of error when a binary “0" is sent. It is left as a problem to show that P = P! as might
be expected from the symmetry resulting from a threshold of vy/2. The result of (3.56) is
dependent on the ratio vy /o, which can be considered a signal-to-noise ratio (SNR), since
vg is the maximum signal voltage, and o is the rms value of the noise voltage. Since erfe (x)
decreases monotonically with x, large SNR results in lower probability of error.

A graphical interpretation of threshold detection is shown in Figure 3.13. The prob-
ability density functions are shown for the received signal and noise for the two cases of
sending a binary “0” or a *1.” The former has a PDF centered at r =0, while the latter has

S

r(t) = nlr)

rit) = v, +nlt)
e 4

ol

Threshold

r
>

f I I |
—u, (1) —u, /2 0 v, /2 U, 3u, /2 v,

FIGURE 3.13 Graphical interpretation of the probability of error for threshold detection.
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a PDF centered at r = vg. The threshold of vy/2 is located midway between these values.
The probabilities of error are the areas of the tails of the two PDFs either above or below
the threshold value.

EXAMPLE 3.4 PROBABILITY OF ERROR FOR THRESHOLD DETECTION
8 :)))))

Calculate and plot the probability of error for threshold detection versus the signal-
to-noise ratio, vy/o, in dB. Use a logarithmic scale for the probability of error.

Solution
Since we are dealing with voltages, the signal-to-noise ratio in dB is calculated as

YdB) = 2010g 2.

a o

Then (3.56) can be used to evaluate P{". The algorithm of Appendix D can be
used to calculate values of the complementary error function. A sample calculation
follows for vy /o = 6 dB:

For vy/o = 6 dB we have a numerical value of

%0 _ 1092 =20,
a

Then the argument of the complementary error function is, from (3.54)

20
o ... R . 3

T W 22

X0
Equation (3.56) gives
PO = Lerfe(xo) = Lerfe(0.707) = 1(0.317) = 0.159.

The same method can be used for other values of vy/o, and the result is plotted
in Figure 3.14. Note that for large values of S/N the probability of error becomes
very small. Error probabilities in the range of 1077 to 107* are often desired in
practice. O
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20 log (%2) dB

FIGURE 3.14 Probability of error versus signal-to-noise ratio for threshold detection.
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White —
noise Nu R
source

FIGURE 3.15 Equivalent noise temperature of an arbitrary white noise source.

NOISE TEMPERATURE AND NOISE FIGURE

Besides being received from the external environment by the antenna, noise is also
generated by passive and active components of a wireless receiver system, In this section
we will study ways of characterizing the noise properties of components such as amplifiers,
mixers, couplers, and filters, and the transmission of noise through a multistage system,

Equivalent Noise Temperature

If an arbitrary noise source is white, so that its power spectral density is not a function of
frequency (at least over the frequency range of interest), it can be modeled as an equivalent
thermal noise source, and characterized by an equivalent noise temperature. This situation is
illustrated in Figure 3.15, where an arbitrary white noise source of driving point impedance
R delivers noise power N, to a load resistor R. This noise source can be replaced with a
noisy resistor of value R, at temperature T, where T, is an equivalent temperature selected
so that the same noise power is delivered to the load. Thus

T, = —2, (3.57)

Wireless components and receiver systems can then be characterized in terms of their
equivalent noise temperature, 7,, expressed in degrees Kelvin (K). Note that 7, = 0, and
may be greater or less than 7 =290 K. In addition, note that the result in (3.57) implies
some fixed bandwidth, B, which is generally the bandwidth of the component or system.
As an example, consider a noisy amplifier having bandwidth B and power gain G. Let the
amplifier be matched to noiseless source and load resistors, as shown in Figure 3, 16a. If the
source resistor of Figure 3.16a is at a (hypothetical) temperature of 7, =0 K, then the input
noise power to the amplifier will be N; =0, and the output noise power N, will be due only
to the noise generated by the amplifier itself. We can obtain the same output noise power

N;=0 N, N, = GkTeB
ET— e o -
49 —@— /s —I}
[ SR R I SR\ R
| | Noisy [ | MNoiseless
'\\ amplifier l\\ amplifier
NOAT, =0k \XT—fo
“ T GkB

(a) (b)

FIGURE 3.16 Equivalent noise temperature of a noisy amplifier, (a) Noisy amplifier. (b) Equivalent

noiseless amplifier.
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by driving an ideal noiseless amplifier with a resistor at a temperature

Nﬂ
Ti’ ey
GkB
so that the output noise power in both cases is N, = GkT, B, as illustrated in Figure 3.16b.
Then T, is the equivalent noise temperature of the amplifier. Note the important point that
the equivalent noise source is applied at the input to the device, and that the input noise
power, N; =kT,B, must be multiplied by the gain of the amplifier to obtain the output
noise power. This is the convention that we will use throughout most of this book, but be
aware that it is also possible to reference the equivalent noise source at the output of the
component.

(3.58)

Measurement of Noise Temperature

A direct way to measure equivalent noise temperature is to drive the component witha
known noise source, and measure the increase in output noise power. Because the thermal
noise power generated by a resistor is so small, active noise sources are available for this
purpose. Active noise sources use a diode or an electron tube to provide a calibrated noise
power output, and are useful for laboratory tests and measurements. Active noise generators
can be characterized by their equivalent noise temperature, but a more common measure of
noise power for such components is the excess noise ratio (ENR), defined as

ENR(dB) = 10 log M = 10log IS__TQ
Mo Ty
where N, and 7, are the noise power and equivalent temperature of the noise generator, and
Ny =kTyB and Ty =290 K are the noise power and temperature associated with a passive
source (a matched load) at room temperature. Solid-state noise generators typically have
ENRs ranging from 20 to 40 dB, meaning that their noise power output is 100 to 10,000
times greater than the thermal noise power from a matched load at room temperature.

The problem with direct measurement of noise temperature is that most components
generate only small levels of noise, which are difficult to measure reliably. Instead, a ratio
technique, called the Y-factor method, is often used in practice. This method is illustrated
in Figure 3.17, where the device under test is connected to one of two different matched
loads at different temperatures. Let T; be the temperature of the hotter load, and T the
temperature of the cooler load, and let the respective output noise powers be Ny and N,.
Since the source noise is uncorrelated with the noise of the device under test, the total output
noise powers for the two cases can be written as

' (3.39)

Ny = GkT\B + GkT,.B (3.60a)
N> = GkT: B + GKT, B, (3.60b)

where the first term is due to the input noise power, and the second term is due to the noise
generated by the device under test. This set of equations has two unknowns: 7. (the desired

T, (hot)
Device
W\o——v— under
T, (cold) test

‘5"’\/\/\/\'—0 &8s T
R

FIGURE 3.17 The Y-factor method for measuring equivalent noise lemperature.
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noise temperature of the device under test), and GB (the gain-bandwidth product of the
amplifier). Define the Y factor as

&—M}]

) s
N T©+T, ™

(3.61)
which is a ratio determined via power measurements, and does not depend on GB. Then
(3.60) can be solved for the equivalent noise temperature of the device under test:

T —YT
e

To obtain accurate results with this method, the two source temperatures should not be too
close together, so that ¥ is not close to unity. In practice, one noise source may be a resistor
at room temperature, while the other is either hotter or colder, depending on whether 7,
is greater or lesser than 7j. An active noise source can be used as a “hot” source, while a
“cold” source can be obtained by immersing a load resistor in liquid nitrogen (T =77 K),
or liquid helium (7' =4 K).

(3.62)

Noise Figure

We have seen that noisy RF and microwave components can be characterized by an
equivalent noise temperature. An alternative characterization is the noise figure, which can
be viewed as a measure of the degradation in the signal-to-noise ratio between the input
and output of the component, When noise and a desired signal are applied to the input of a
noiseless network, both noise and signal will be attenuated or amplified by the same factor,
so that the SNR will be unchanged. But if the network is noisy, the output noise power will
be increased to a greater degree than the output signal power, so that the output SNR will
be reduced. The noise figure, £, is a measure of this reduction in SNR, and is defined as

L

TN, = l, (3.63)

where §; and N; are the input signal and noise powers, and S, and N, are the output signal
and noise powers. By definition, the input noise power must be the noise power from a
matched load at 7; =290 K; that is, N; =kTyB. Noise figure is usually expressed in dB,
obtained as F(dB) = 10 log/F. (Note: some authors define the numerical value of F as the
noise factor, and the corresponding value in dB as the noise figure, but we will not make
this distinction.)

We can establish the relation between noise figure and equivalent noise temperature by
referring to Figure 3.18, which shows noise power N; and signal power §; being fed into
a noisy two-port network. The network is characterized by a power gain G, a bandwidth
B, and an equivalent noise temperature 7,. Note that the input noise power is N; =kTy B,
as required by the definition of noise figure. The output signal power is S, = G §;. while

Ty =290K
R Noisy
8 network R
G.8,T,
Pr' = Sl' ; Ni’ Pr; =§,+ Nra
N, = kT,B

FIGURE 3.18 Relating the noise figure of a noisy network to its equivalent noise temperature.
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the output noise power is the sum of the amplified input noise power and the internally
generated noise:

N, = kGB(Ty + T,).
Using these results in (3.63) gives the noise figure as

S kGB(Ty +T,) 7,
= =1 =32 |, 3.64
kTyB G TR (3.64)

This result can be solved for 7, in terms of F to give
T, =(F - 1T (3.65)

If the network were perfectly noiseless, its equivalent noise temperature would be zero, and
its noise figure would be unity, or 0 dB. These results show that equivalent noise temperature
and noise figure are interchangeable ways of characterizing the noise properties of RF and
microwave components. In practice, mixers and amplifiers are usually specified in terms of
noise figure, while antennas and receivers are often specified in terms of noise temperature.

Again referring to the two-port network of Figure 3.18, if we define Nggeq as the noise
power added by the network, then the output noise power can be expressed as

Nr) = G{N; + Naddud)|

assuming that Nygeq is applied to the input of the network. Then, using (3.63) and the fact
that §, = G S;, allows the noise figure to be written as
) Si/Ni ——— Nadded

GS‘!;!G(Nr + Nadded) Nf'
Since Nygded 18 independent of N; it cannot be proportional to N;, and so the noise figure
depends on the particular value chosen for the input noise power. For this reason N; must
be defined according to a fixed standard if the noise figure is to be meaningful in a general
sense. The standard chosen is N; = kT B.

(3.66)

Noise Figure of a Lossy Line

We can now determine the noise figure of an important practical component—the
lossy transmission line (or attenuator). Figure 3.19 shows a lossy transmission line of
characteristic impedance Z = R, and held at a physical temperature 7'. The power gain, G,
of alossy network is less than unity: the power loss factor, L,canbe definedas L= 1/G = |,

If the input of the line is terminated with a matched load at temperature 7', then the
entire system is in thermal equilibrium, and the output of the line will appear as a resistor of
value R, at temperature 7'. Thus the available noise power at the output must be N, = k7B,
But we can also view the output noise power as a sum of the input noise power attenuated
through the lossy line, and the noise power added by the lossy line itsell. In this case we

P
/ \\ o]
f | N,=KkTB _ N,=KkTB
I\R | —> LT Z,=R —
!
1 g,
\\. /;‘ ©

FIGURE 3.19 Determining the noise figure of a lossy line or attenuator with loss L and tempera-
ture 7.
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would write
N, = kTB = G(kTB + Nyugea). (3.67)

where Nyageq 18 the noise generated by the line, as if it appeared at the input terminals of
the line. Solving (3.67) for this power gives

1-G

Nuddea = kTB = (L — 1)kTB. (3.68)

Then (3.57) shows that the equivalent noise temperature of the lossy line (as referred to the
input) is
N added
kB

The noise figure of the lossy line can then be found using (3.64) to be

T, =

=(L —1T. (3.69)

Ta T

F=1+ T I+ (L I)TU. (3.70)
Note that in the limiting case of a lossless line, with L =1, the above results reduce to
T,=0and F =1 (0 dB) as expected, since a lossless component does not generate thermal
noise. Another special case occurs when the line or attenuator is at room temperature. Then
T =T,, and the noise figure reduces to /' = L, For instance, a 6 dB attenuator at room
temperature has a noise figure of 6 dB. At higher temperatures, however, the noise figure
will be higher.

Noise Figure of Cascaded Components

In a typical wireless receiver the input signal travels through a cascade of several
different components such as filters, amplifiers, mixers, and transmission lines. Each of
these stages will progressively degrade the signal-to-noise ratio, so it is important to quantify
this effect to evaluate the overall performance of the receiver. If we know the noise figure
(or noise temperature) of the individual stages. we can determine the noise figure of the
cascade connection of stages. We will see that the most critical stage is usually the first, and
that later stages generally have a progressively reduced effect on the overall noise figure,
This is an important consideration for the design and layout of receiver circuitry,

Consider a cascade of two components having power gains G and G, noise figures
F and F>, and noise temperatures T, and 7,2, as shown in Figure 3.20a. We wish to find
the overall noise figure, F, and noise temperature, 7,, of the cascade as if it were the single
component of Figure 3.20b. Note that we set the input noise power to be N; =kT,B.

Using noise temperatures, the noise power at the output of the first stage is

Ny = G \kTyB + G kT, B. (3.71)
Ni= kT8 Gy Ny Gy N, N=ktyg | GG N,
—_—| F, - Fy |——— r —_—
-Tpl T.\rl Te
(a) (h)

FIGURE 3.20 Noise figure and equivalent noise temperature of a cascaded system. (a) Two cascaded

networks. (b) Equivalent network.
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Then the noise power at the output of the second stage is

N, = GaN, + G2kT,n B

T i
———GJngB(T(H-TH; + G") (3.72)
!
For the equivalent system of Figure 3.20b the output noise power can be written as
N, = GGk B(T, + Ty), (3.73)
so comparison with (3.72) gives the noise temperature of the cascade system:
1,
To=Ty+ —=. 3.74
: 1+ G, (3.74)
Using (3.64) to convert noise temperature to noise figure gives the noise figure of the cascade
system:
Fy—1
F=Fd— 4 (3.75
i G, 3.75)

The above results are for two cascaded networks, but can be generalized to an arbitrary
number of stages as follows:

T T .
MR 3.
SF wi-v (3.76)
=1 B =1
F=F 42 J (3.77)

+ T
G GGy

These results show that the noise characteristics of a cascaded system are dominated by
the first few stages, since the effect of later stages is reduced by the product of the gains of
the preceding stages. Thus, for best overall system noise performance, the first stage of a
receiver should have a low noise figure and at least moderate gain. Expense and effort are
most rewarded when applied to improving the noise characteristics of the first or second
stage, as opposed to later stages, since later stages have a diminished impact on overall
noise performance.

The block diagram of a wireless receiver front end is shown in Figure 3.21. Com-
pute the overall noise figure of this subsystem. If the input noise power from a
feeding antenna is N; =k7, B, where 7, =15 K, find the output noise power in
dBm. What is the two-sided power spectral density of the output noise? If we re-
quire a minimum SNR of 20 dB at the output of the receiver, what is the minimum
signal voltage that can be applied at the receiver input? Assume the system is at
temperature 7, with a characteristic impedance of 50 €, and an IF bandwidth of

) > EXAMPLE 3.5 ANALYSIS OF A WIRELESS RECEIVER
u 1)) >>

10 MHz.
Low noise Bandpass
amplifier filter Mixéer
S". N,; ] A Sy N,
I ~
G=10d8  L=1ap L=3d8
F=2dB -

FIGURE 3.21 Block diagram of a wireless receiver front-end circuit.
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Solution
We first carry out the required conversions from dB to numerical values:

G=10dB'= 10 G =-1.0dB=0.79 G=-3.0dB =035
F=2dB=1.58 F=1dB=1.26 F=4dB =25l

Then we can use (3.77) to find the overall noise figure of the system:

-1 F-1 (126—1) (251—1)
F= 2 i = 158
F¥ R T BT (10)(0.79)
— 1.80 = 2.55 dB

The best way to compute the output noise power is to use noise temperatures. From
(3.65), the equivalent noise temperature of the overall system is

T.=(F— 1Ty = (1.80 — 1)(290) = 232 K.

The overall gain of the system is G = (10)(0.79)(0.5)=3.95. Then we can find
the output noise power as

N, = k(T, + T.)BG = (1.38 x 1072)(15 + 232)(10 x 10°)(3.95)
=1.35x 100" W = —08.7 dBm

From (3.26), the power spectral density of the output noise over the IF bandwidth is

N, 135x10°°W
2B~ 2(10 x 105)

Finally, for an output SNR of 20 dB = 100, the input signal power must be

Splw) = = 6.8 x 107! W/Hz.

S _ SO _ S{) N(i —'*l ].35 X I(}_|'3
‘"G N, G 3.95

For a 50 € system impedance, this corresponds to an input signal voltage of

=342 x 107> W = —84.7 dBm.

V, = ZoS: = /(50)(3.42 x 10~12) = 1.31 x 1077 v = 13.1 uV (rms).

Note: It may be tempting to compute the output noise power from the definition
of the noise figure as

No = N,—F(%) = N,FG = kT,BFG

L5

= (1.38 x 1072)(15)(10 x 10%)(1.8)(3.95) = 1.47 x 107" W,

This is an incorrect result! The reason for the disparity with the earlier result is
because the definition of noise figure assumes an input noise level of k7; B, while
this problem involves an input noise of kT, B, with T, = 15 K. This is a common
error and suggests that when computing absolute noise powers it is often safer to
use noise temperatures to avoid this confusion. O

3.6

NOISE FIGURE OF PASSIVE NETWORKS

As we have seen in the previous section, the noise figure of an RF or microwave
system can be evaluated if we know the noise figures of the individual components. In
the previous section we derived the noise figure for a matched lossy line or attenuator by
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FIGURE 3.22 A passive two-port network with impedance mismatches. The network is at physical

temperature 7.

using a thermodynamic argument, but that method is not useful for very many circuits. Here
we extend the thermodynamic method to evaluate the noise figure of general passive RE
and microwave networks (networks that do not contain active devices such as diodes or
transistors, which generate nonthermal noise). In addition, this method will account for the
change in noise figure that occurs when a component is impedance mismatched at either its
input or output port.

Generally it is easier and more accurate to find the noise characteristics of an active
device, such as a diode or transistor, by direct measurement than by calculation from first
principles. Once the noise parameters of a device are known, the overall noise figure of a
circuit containing that device can be evaluated. This is demonstrated in Chapter 6 for the
design of low-noise amplifiers.

This section requires knowledge of S-parameters and available gain, topics which are
briefly treated in Chapter 2, and in more detail in reference [4]. If the reader does not have
this background, he or she may skip this section without any loss of continuity for the rest
of the book.

Noise Figure of a Passive Two-port Network

Figure 3.22 show an arbitrary passive two-port network, with a generator at port 1 and
a load at port 2. The network is characterized by its S-parameter matrix, [S]. In the general
case, impedance mismatches may exist at each port, and we define these mismatches in
terms of the following reflection coefficients:

I'y = reflection coefficient looking toward generator
r in
"ow = reflection coefficient looking toward port 2 of network

reflection coefficient looking toward port | of network

I'; = reflection coefficient looking toward load

If we assume the network is at temperature 7. and an input noise power of Ny =kTB is
applied to the input of the network, the available output noise power at port 2 can be written as

Ny = G kTB + Ga1 Nadded (3.78)
where Nyygeq is the noise power generated internally by the network (referenced to port 1),

and Gy is the available gain of the network from port | to port 2. As derived in reference
[4], and later in Chapter 6, the available gain can be expressed in terms of the S-parameters
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of the network and the port mismatches as

power available from network 1821121 — [T's[?)
Gzl — - - = 5 . (3.?9)
power available from source |1 — 81 Tg2(1 — [Toul?)
Also, the output mismatch can be expressed as
S8 s
Foue =8 e 3.80
out 2 + 1— Sl]r.ﬁ' ( )

Observe that when the network is matched to its external circuitry. so that I'y =0 and
S22 =0, we have oy =0 and Gy = |S1|%, which is the gain of the network when it is
matched. Also observe that the available gain of the network does not depend on the load
mismatch, 'z, This is because available gain is defined in terms of the maximum power
that is available from the network, which occurs when the load impedance is conjugately
matched to the output impedance of the network.

Since the input noise is k7B, and the network is at temperature T', the network is in
thermodynamic equilibrium, and so the available output noise power must be Ny = k7B.
Then we can solve for Nyggeq from (3.78) to give

| — Gy

Nadded = kTB. (3.81)

21

Then the equivalent noise temperature of the network is

Nygw 1 —=Gn

T.= = T, (3.82

kB Gy )
and the noise figure of the network is

1 |-Gy T _

F=1s— =1 —— 3.83

Ty * Gn Ty WiRS)

Note the similarity of (3.81)—(3.83) to the results in (3.68)—(3.70) for the lossy line—the
essential difference is that here we are using the available gain of the network, which
accounts for impedance mismatches between the network and the external circuit. We will
now illustrate the use of this result with some applications to problems of practical interest.

Application to a Mismatched Lossy Line

In Section 3.5 we found the noise figure of a lossy transmission line under the assump-
tion that it was matched to its input and output circuits. Now we consider the case where
the line is mismatched to its input circuit.

Figure 3.23 shows a transmission line of length ¢ at temperature T', with a power loss
factor L =1/G, and an impedance mismatch between the line and the generator. Thus,

ZE - ! -
’W\/\«-é S
ot st
[T I
r:f l—Ill rm_” r‘u‘=”

FIGURE 3.23 A lossy transmission line at temperature 7 with an impedance mismatch at its input

port.
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Z, # Zy, and the reflection coefficient looking toward the generator can be written as

Z,— Zy

f = ——— £ ().
' Z_Q-FZ{}?E

The scattering matrix of the lossy line of characteristic impedance Zy can be written as

0 e
'S'=[1 U}G—E- (3.84)

where B is the propagation constant of the line. Using (3.80) gives the reflection coefficient
looking into port 2 of the line as

SIES?.]F_\‘ Fs ~2jpe
out = Sap 4 ——— = L2 3.85
Fow = S22+ Tog o = e (3.85)

Then the available gain, from (3.79), is

f1=IT?  LA-InyP)

G" - ) - ~ - ‘
S T R | N E

(3.86)

We can verify two limiting cases of (3.86): when L =1 we have G, = |, and when I’y =0
we have Gy, = 1/L.
Using (3.82) gives the equivalent noise temperature of the mismatched lossy line as

li— & L— DL+ |
T, 2 ML + |Ts]7)

Ga T LU =P

(3.87)

The corresponding noise figure can then be evaluated using (3.64). Observe that when
the line is matched, Iy =0 and (3.87) reduces to T, =(L — )T, in agreement with the
result for the matched lossy line given by (3.69). If the line is lossless, then L =1 and
(3.87) reduces to T, =0 regardless of mismatch, as expected. But when the line is Jossy
and mismatched, so that L > | and |T'g| > 0. then the noise temperature given by (3.87) is
greater than 7, = (L — 1)T', the noise temperature of the matched lossy line. The reason
for this increase is that the lossy line actually delivers noise power out of both its ports, but
when the input port is mismatched some of the available noise power at port 1 is reflected
from the source back into port 1, and appears at port 2. When the generator is matched to
port 1, none of the available power from port 1 is reflected back into the line, so the noise
power available at port 2 is a minimum.

Application to a Wilkinson Power Divider

Here we evaluate the noise figure of a power divider, which is another common coni-
ponent found in wireless systems, Figure 3,24 shows a Wilkinson power divider. A detailed
analysis and description of this circuit are given in reference [4]. but for our purposes
knowledge of the scattering matrix is sufficient:

o1
S1=—_ |1 0 o (3.88)
V2L |1 0 0

where L is the dissipative insertion power loss from port 1 to port 2 or 3, due to the loss
of the quarter-wave transmission lines connecting those ports, The scattering matrix shows
that the divider is matched at all ports, and divides input power at port | evenly to ports
2 and 3, when those ports are matched. The shunt resistor across ports 2 and 3 provides
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FIGURE 3.24 A Wilkinson power divider with port 3 terminated in a matched load.

isolation between those ports (S23 = S32 = 0), but does not dissipate input power when ports
2 and 3 are terminated with matched loads.

To evaluate the noise figure of the Wilkinson divider, we first terminate port 3 with a
matched load; this converts the 3-port device to a 2-port device. If we assume a matched
source at port 1, we have I'y = 0. Equation (3.80) then gives I'oy = S2 =0, and so the
available gain can be calculated from (3.79) as

5 |
Gy = |Su|" = T (3.89)

Then the equivalent noise temperature of the Wilkinson divider is, from (3.82),
| — G
T, = 27 =L - DT, (3.90)

21

where T is the physical temperature of the divider. Using (3.64) gives the noise figure as

= B = 2 Z
F 1+T” 1+ L I)Tn' (3.91)
Observe that if the divider is at room temperature, then 7' = Tjy and (3.91) reduces to £ =2 L.
If the divider is at room temperature and lossless, (3.91) reduces to F =2 = 3 dB. In this
case the source of the noise power is the isolation resistor,

Because the divider circuit of Figure 3.24 is matched at its input and output, it is easy
to obtain these same results using thermodynamic arguments. Thus, if we apply an input
noise power of k7B to port 1 of the matched Wilkinson divider at temperature 7', the system
will be in thermal equilibrium and the output noise power must therefore be k7B, We can
also express the output noise power as the sum of the input power times the gain of the
divider, and Nyged. the noise power added by the divider itself (referenced at the input to
the divider):

kTB Nuddcd
Solving for Nyggeq gives
Nadded = KTB(2L — 1), (3.93)
so the equivalent noise temperature is
Nadded
T, = = (2L — 1T,
¢ B ( )

in agreement with (3.90).
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3.7

DYNAMIC RANGE AND INTERMODULATION DISTORTION

Since thermal noise is generated by any lossy component, and all realistic components
have at least a small loss, the ideal linear component or network does not exist in the
sense that its output response is always exactly proportional to its input excitation. Thus,
all realistic devices are nonlinear at very low power levels due to noise effects. In addition,
all practical components also become nonlinear at high power levels. This may ultimately
be the result of catastrophic destruction of the device at very high powers or, in the case
of active devices such as diodes and transistors, due to effects such as gain compression
or the generation of spurious frequency components due to device nonlinearities. In either
case these effects set a minimum and maximum realistic power range, or dynamic range,
over which a given component or network will operate as desired. In this section we will
study dynamic range, and the response of nonlinear devices in general. These results will be
useful for our later discussions of amplifiers (Chapter 6), mixers (Chapter 7), and wireless
receiver design (Chapter 10),

Devices such as diodes and transistors are nonlinear components, and it is this nonlin-
earity that is of great utility for functions such as amplification, detection, and frequency
conversion [5]. Nonlinear device characteristics, however, can also lead to undesired re-
sponses such as gain compression and the generation of spurious frequency components,
These effects may produce increased losses, signal distortion, and possible interference
with other radio channels or services.

Figure 3.25 shows a general nonlinear network, having an input voltage v; and an
output voltage v,. In the most general sense, the output response of a nonlinear circuit can
be modeled as a Taylor series in terms of the input signal voltage:

Uy = dg+ a v + agvf + a_qv;-" 4 (3.94)

where the Taylor coefficients are defined as

an = v,(0) (DC output) (3.95a)
d a . "
a, = 2 (linear output) (3.95b)
dtJ,' Uy =0
d?v, . _
a@=— (squared output) (3.95¢)
i I'r=U

and higher order terms. Thus, different functions can be obtained from the nonlinear network
depending on the dominance of particular terms in the expansion. If ag is the only nonzero
coefficient in (3.94), the network functions as a rectifier. converting an AC signal to DC. If
a is the only nonzero coefficient, we have a linear attenuator (a) < 1) or amplifier (a; > 1),
If @ is the only nonzero coefficient, we can achieve mixing and other frequency conversion
functions. Usually, however, practical devices have a series expansion containing many
nonzero terms, and a combination of several of these effects will occur. We consider some
important special cases below.

v Nnn‘llncnr u,
—— device of ———
network

FIGURE 3.25 A general nonlinear device or network.
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Gain Compression

First consider the case where a single frequency sinusoid is applied to the input of a
general nonlinear network, such as an amplifier:

v; = Vycoswpl. (3.96)
Then (3.94) gives the output voltage as

v, = ag + ay Vo cos wpt + ax VE cos® wot + az V) cos® wot + -+
= ((tn + %ag Vuz) + ((£| Vi + %(13 V‘;) Cos wyl (3.97)

+ ap Vi cos 2wt + tas Vg cos3wot + - - .
This result leads to the voltage gain of the signal component at frequency wy:

3 3
U‘-{}W) _ a Vo + 363V0

v:_.wu) VO

Gy= =a) + 3a3 Vg, (3.98)

where we have retained only terms through the third order.

The result of (3.98) shows that the voltage gain is equal to the a; coefficient, as expected,
but with an additional term proportional to the square of the input voltage amplitude. In most
practical amplifiers ¢ is typically negative, so that the gain of the amplifier tends to decrease
for large values of Vi,. This effect is called gain compression. or saturation. Physically, this
is usually due to the fact that the instantaneous output voltage of an amplifier is limited by
the power supply voltage used to bias the active device. Smaller values of a3 will lead to
higher output voltages.

A typical amplifier response is shown in Figure 3.26. For an ideal linear amplifier a
plot of the output power versus input power is a straight line with a slope of unity, and
the gain of the amplifier is given by the ratio of the output power to the input power. The
amplifier response of Figure 3.26 tracks the ideal response over a limited range, then begins
to saturate, resulting in reduced gain. To quantify the linear operating range of the amplifier,
we define the 1 dB compression point as the power level for which the output power has
decreased by 1 dB from the ideal characteristic. This power level is usually denoted by
Py, and can be stated in terms of either input power or output power. For amplifiers Py is

A
//
10} g
P (referred to output) 4B,
7,
g 0 IT\‘ 1dB compression
= i
= = point
=) &
3 l's
ol =10 'l 3
(2
| t
2
20 &
: AL
l | | I | | | Py
30 =20 -10 0 10 20 (dBm)

FIGURE 3.26 Definition of the 1 dB compression point for a nonlinear amplifier.
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usually specified as an output power, while for mixers Py is usually specified in terms of
input power.

Intermodulation Distortion

Observe from the expansion of (3.97) that a portion of the input signal at frequency wy
is converted to other frequency components. For example, the first term of (3.97) represents
a DC voltage, which would be a useful response in a rectifier application. The voltage
components at frequencies 2y or 3wy might be useful for frequency multiplier circuits.
In amplifiers, however, the presence of other frequency components will lead to signal
distortion if those components are in the passband of the amplifier.

For a single input frequency, or fone, wy, the output will in general consist of harmonics
of the input frequency of the form nwy, for n =0, 1, 2..... Usually these harmonics lie
outside the passband of the amplifier, and so do not interfere with the desired signal at
frequency wy. The situation is different, however, when the input signal consists of two
closely spaced frequencies,

Consider a rwo-fone input voltage, consisting of two closely spaced frequencies, o
and @s:

v = Vylcosw)t + cosmnt) (3.99)
From (3.94) the output is

Vo = dg + ay Volcos wit + cos wat) + as Voz(cos Wit + cos wg!)z
+as V{f(cos |t + cos wr,g.f)3 +
= ap + ay Vo cos wit + ay Vi cos wat + %agvrf('[ + cos 2mt)
+ %ag Vnz(l + cos 2wat) + o V{f cos () —wa)t + az V{f cos (@) + an)t
+az Vi (3 cos it + § cos 3wit) + a3 Vi (3 cos wat + L cos 3wat)
+a3 V' [3 cos wat + 3 cos (2w — wa)t + 3 cos 2wy + @)1 ]

+a3V{;[% cosayt + j}cos{?.(u; —wt + %cos(}!cﬂg +w;)t] +ee, (32100

where standard trigonometric identities have been used to expand the initial expression. We
see that the output spectrum consists of harmonics of the form

mey -+ nes, (3.101)

with m, n =0, £1, &2, £3,.... These combinations of the two input frequencies are
called intermodulation products, and the order of a given product is defined as |m| + |n|,
For example, the squared term of (3.100) gives rise to the following four intermodulation

products of second order:

2y (second harmonic of wy) m=2 n=0  order=2
2 (second harmonic of wy) m=0 n=2 order =2
w) — w; (difference frequency) m=1 n=-1 order=2
@ -+ w; (sum frequency) m=1n=1 order=2

All of these second-order products are undesired in an amplifier, but in a mixer the sum or




3.7 Dynamic Range and Intermodulation Distortion 101

0 I 8 I

1
0w — ey W) Wy 2w, 2w 3w e @
2 2 / 2
2y — 2ws—wy W, + @y 2w+ wy 2w,y A+

FIGURE 3.27 Output spectrum of second and third-order two-tone intermodulation products, as-
SUMINg @) < ;.

difference frequencies form the desired outputs. In either case, if @ and w, are close, all
the second-order products will be far from ; or w,, and can easily be filtered (either passed
or rejected) from the output of the component.

The cubed term of (3.100) leads to six third-order intermodulation products: 3w, 3w,
2a + wa, 2w + @y, 2w — wa, and 2w; — wy. The first four of these will again be located
far from e, and w,, and will typically be outside the passband of the component. But the
two difference terms produce products located near the original input signals at o and s,
and so cannot be easily filtered from the passband of an amplifier. Figure 3.27 shows a
typical spectrum of the second- and third-order two-tone intermodulation products. For an
arbitrary input signal consisting of many frequencies of varying amplitude and phase, the
resulting in-band intermodulation products will cause distortion of the output signal. This
effect is called third-order intermodulation distortion.

Third-Order Intercept Point

Equation (3.100) shows that as the input voltage Vy increases, the voltage associated
with the third-order products increases as V; . Since power is proportional to the square of
voltage, we can also say that the output power of third-order products must increase as the
cube of the input power. So for small input powers the third-order intermodulation products
must be very small, but will increase quickly as input power increases. We can view this
effect graphically by plotting the output power for the first- and third-order products versus
input power on log-log scales (or in dB), as shown in Figure 3.28.

The output power of the first order. or linear, product is proportional to the input
power, and so the line describing this response has a slope of unity (before the onset of
compression). The line describing the response of the third-order products has a slope of 3.
(The second-order products would have a slope of 2, but since these products are generally
not in the passhand of the component, we have not plotted their response in Figure 3.28.)
Both the linear- and third-order responses will exhibit compression at high input powers, so
we show the extension of their idealized responses with dotted lines. Since these two lines
have different slopes, they will intersect, typically at a point above the onset of compression,
as shown in the figure. This hypothetical intersection point, where the first-order and third-
order powers are equal, is called the third-order intercept point, denoted Ps, and specified
as either an input or an output power., Usually P; is referenced at the output for amplifiers,
and at the input for mixers,

As depicted in Figure 3.28, P, generally occurs at a higher power level than Py, the
I dB compression point. Many practical components follow the approximate rule that Py
is 12 to 15 dB greater than Py, assuming these powers are referenced at the same point.

We can express P in terms of the Taylor coefficients of the expansion of (3.100) as
follows. Define P, as the output power of the desired signal at frequency ;. Then from
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I

A i
i 3 Intercept
1ol Py (referred to output) ;,;,;,,_-' point
Fd
L P, (referred to output) 1 dB ‘1.:.' 7 Compression
z -0}
@
2
25 =20
_a0 -
P+ (referred to input)
40—
| | [ ! | 1 | ~
-50  -40 =30 =20 -10 0 10

Py (dBm)

FIGURE 3.28 Third-order intercept diagram for a nonlinear component.

(3.100) we have
Py, = dal V. (3.102)

Similarly, define Py, ., as the output power of the intermodulation product of frequency
2w, — wy. Then from (3.100) we have

Pro—un = 1 (3aaV)? = L3V, (3.103)

By definition, these two powers are equal at the third-order intercept point. If we define the
input signal voltage at the intercept point as Vjp, then equating (3.102) and (3.103) gives

1 .2y2 — 9 26
34 Vip = paVip.
Solving for Vjp yields

4a,

e (3.104)

Vip =

Since P; is equal to the linear response of P, at the intercept point, we have from (3.102)
and (3.104) that

1 2a}
2472 !
Py = P, |vu=vm =SEVE= 2, (3.105)

where P; in this case is referred to the output port. This expression will be useful in the
following section,

Dynamic Range

We can define dynamic range in a general sense as the operating range for which a
component or system has desirable characteristics. For a power amplifier this may be the
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FIGURE 3.29 lustrating linear dynamic range and spurious free dynamic range.

power range that is limited at the low end by noise and at the high end by the compression
point. This is essentially the linear operating range for the amplifier, and is called the linear
dynamic range (DR; ). For low-noise amplifiers or mixers, operation may be limited by
noise at the low end and the maximum power level for which intermodulation distortion
becomes unacceptable. This is effectively the operating range for which spurious responses
are minimal, and is called the spurious-free dynamic range (DRy).

We thus compute the linear dynamic range DR, as the ratio of Py, the 1 dB compression
point, to the noise level of the component, as shown in Figure 3.29. These powers can be
referenced at either the input or the output of the device. Note that some authors [6] prefer
to define the linear dynamic range in terms of a minimum detectable power level. This
definition is more appropriate for a receiver system, rather than an individual component,
as it depends on factors external to the component itself, such as the type of modulation
used, the recommended system SNR, effects of coding, and related factors.

The spurious free dynamic range is defined as the maximum output signal power for
which the power of the third-order intermodulation product is equal to the noise level of the
component, This situation is shown in Figure 3.29. If P, is the output power of the desired
signal at frequency i, and Pa,,, ., is the output power of the third-order intermodulation
product, then the spurious free dynamic range can be expressed as

‘pf.rJ i

P, Qeny —ieha

DR; = - (3.106)
with P, ., taken equal to the noise level of the component. Ps,, _,, can be written in
terms of Py and P, as follows:

96;'; v(iﬁ %(l? VD& [Pmi )3
P2w| —tip = = =

32 4a® (P
9a3

(3.107)

where (3.102) and (3.105) have been used. Observe that this result clearly shows that the
third-order intermodulation power increases as the cube of the input signal power. Solving
(3.107) for P, , and applying the result to (3.106) gives the spurious free dynamic range in
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terms of Py and N, the output noise power of the component:

Poy P\
e — =1=] , (3.108)

Day | —uen

Pauy —uig =iy
This result can be written in terms of dB as
DR (dB) = 3(Ps — N,). (3.109)

for Py and N, expressed in dB or dBm. If the output SNR is specified, this can be added to
N, 1o give the spurious free dynamic range in terms of the minimum detectable signal level.
Finally, although we derived this result for the 2w; — w, product, the same result applies
for the 2w, — @, product.

EXAMPLE 3.6 DYNAMIC RANGES
”)D)) A receiver has a noise figure of 7 dB, a 1 dB compression point of 25 dBm (ref-

erenced to output), a gain of 40 dB, and a third-order intercept point of 35 dBm
(referenced to output). If the receiver is fed with an antenna having a noise tem-
perature of T4 = 150 K, and the desired output SNR is 10 dB, find the linear and
spurious free dynamic ranges. Assume a receiver bandwidth of 100 MHz.

Solution
The noise power at the receiver output can be calculated as

N, = GkB[Ts + (F — DT,] = 10*(1.38 x 1072)(10*)[150 + (4.01)(290)]
=18x 107" W = —47.4dBm.

Then the linear dynamic range is, in dB
DRy = P, — N, =25dBm +47.4dBm = 72 dB.
Equation (3.109) gives the spurious free dynamic range as
DRy = 2(Py — N, — SNR) = (35 + 47.4 — 10) = 48.3 dB.

Observe that DRy < DR;. O

Intercept Point of Cascaded Components

As in the case of noise figure, the cascade connection of components has the effect of
degrading (lowering) the third-order intercept point. Unlike the case of a cascade of noisy
components, however, the intermodulation products in a cascaded system are deterministic
(coherent), so we cannot simply add powers, but must deal with voltages.

With reference to Figure 3.30, let G| and P; be the power gain and third-order intercept
point for the first stage, and G, and P{’ be the corresponding values for the second stage,
From (3.107) the third-order distortion power at the output of the first stage is

A3
! s (me)

Pztrn—w: - (P{)E .

(3.110)

where P, is the desired signal power at frequency w) at the output of the first stage. The
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FIGURE 3.30 Third-order intercept point for a cascaded system. (a) Two cascaded networks.

(b) Equivalent network.

voltage associated with this power is

; = (P,) o
Vz(v;—'(dg = sz_.wlzt} = —P{_’ (3.111)

where Zj is the system impedance.

The total third-order distortion voltage at the output of the second stage is the sum of this
voltage times the voltage gain of the second stage, and the distortion voltage generated by the
second stage. This is because these voltages are deterministic and phase-related, unlike the
uncorrelated noise powers that occur in cascaded components. Adding these voltages gives
the worst-case result for the distortion level, because there may be phase delays within the
stages that could cause partial cancellation. Thus we can write the worst-case total distortion
voltage at the output of the second stage as

_Jer)'n e

Vi =g -
Since P! = G, P), , we have
VY oy = (L,Jri,,)\/(f’;)"zu. (3.112)
2 G.P, ' Pl |
Then the output distortion power is
" 2 2 n\3
Pl = (VI‘Z‘”E) = (G;P; + %) By = (—% (3.113)
Thus the third-order intercept point of the cascaded system is
p‘=(l_+i)”|. (3.114)
' GyPy Py

Note that P; = G, P; for P] — oo, which is the limiting case when the second stage has
no third-order distortion. This result is also useful for transferring P; between input and
output reference points.

EXAMPLE 3.7 CALCULATION OF CASCADE INTERCEPT POINT

”))D A low-noise amplifier and mixer are shown in Figure 3.31. The amplifier has a
gain of 20 dB and a third-order intercept point of 22 dBm (referenced at output),
and the mixer has a conversion loss of 6 dB and a third-order intercept point of
13 dBm (referenced at input). Find the intercept point of the cascade network.
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B

FIGURE 3.31 System for Example 3.7.

Solution
First we transfer the reference of P, for the mixer from its input to its output:

P{ = 13 dBm — 6 dB = 7 dBm (referenced at output)
Converting the necessary dB values to numerical values:
Py =22 dBm = 158 mW (for amplifier)

Py =7dBm =5 mW (for mixer)
Gy =—-6dB =0.25 (for mixer)

Then using (3.114) gives the intercept point of the cascade as

] 1 & 1 1!
Py — LI (R R SR L R
: (G:Pg G P;’) ((0:25)(158) * 5) m o

which is seen to be much lower than the P; of the individual components. O

Passive Intermodulation

The above discussion of intermodulation distortion was in the context of active circuits
involving diodes and transistors, but it is also possible for intermodulation products to be
generated by passive nonlinear effects in connectors, cables, antennas, or almost any com-
ponent where there is a metal-to-metal contact. This effect is called passive intermodulation
(PIM) and, as in the case of intermodulation in amplifiers and mixers. occurs when signals
at two or more closely spaced frequencies mix to produce spurious products.

Passive intermodulation can be caused by a number of factors, such as poor mechanical
contact, oxidation of junctions between ferrous-based metals, contamination of conducting
surfaces at RF junctions, or the use of nonlinear materials such as carbon fiber composites
or ferromagnetic materials. In addition, when high powers are involved, thermal effects
may contribute to the overall nonlinearity of a junction. It is very difficult to predict PIM
levels from first principles, so measurement techniques must usually be used.

Because of the third-power dependence of the third-order intermodulation products with
input power, passive intermodulation is usually only significant when input signal powers
are relatively large. This is frequently the case in cellular telephone base station transmitters,
which may operate with powers of 30-40 dBm, with many closely spaced RF channels. It
is often desired to maintain the PIM level below —125 dBm, with two 40 dBm transmit
signals. This is a very wide dynamic range, and requires careful selection of components
used in the high-power portions of the transmitter, including cables, connectors, and antenna
components. Because these components are often exposed to the weather, deterioration due.
to oxidation, vibration, and sunlight must be offset by a careful maintenance program.
Passive intermodulation is generally not a problem in receiver systems, due to the much
lower power levels.
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PROBLEMS

31
32
33

3.8

3.10

Prove the four properties of cumulative distribution functions as given in (3.2a)—(3.2d).

Use the definition of expected value to prove the linearity properties of (3.14).

Evaluate the mean and variance for the uniform, gaussian, and Rayleigh probability density functions
given in (3.12).

Evaluate the nth moment of a random process having a gaussian PDF with zero mean (m =0). Show
that E{x"} = 0 for odd n.

Consider the random variable z = v + v, where x, y, and z are zero-mean gaussian random variables
having variances a7, a2, and 0. If x and y are independent, show that 07 = a7 + 0.

A gaussian white noise process, X, has zero mean and variance . Evaluate the probability P(—o <
¥ < o}, that is, the probability that a particular sample, x, of the process satisfies the inequality
—0 <X <0,

The autocorrelation function for a white noise source is R(t) = —ingﬁ(r} . It this source is applied to
an ideal bandpass filter with the frequency response shown below, find the total noise power output.

H{f)
—— Af — | «— Af —
| | | l | | -
~fo fo

A noisy resistor of value R, at temperature 7, is connected 1o a load resistor of value R, . Calculate
and plot the average power dissipated in the load, normalized to kT8, for 0 < R, < 10R. Prove that
maximum power transfer occurs for Ry = R.

A gaussian white noise source with a two-sided power spectral density 8;( f)=nq/2 is applied to
the RC low-pass filter circuit shown below. Find the output noise power, N,. in terms of nq and
fe=1/2n RC (the cutoff frequency of the filter).

R
o ANV 0
Si(f) —= =c S, () —>=
e O

Derive the result of (3.38) for white noise passing through an ideal integrator by using the autocorrela-
tion function, instead of the power spectral density. Find the output noise power from N, = E n,’(1)},
and evaluate n,(¢) by integrating n,(1) according to the integrator operation.
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3.11

312

3.13

.14

3.15

3.18

3.19

3.20

3.21

Consider the random process (1) = x{1) cos{wqt + &), where x(1) is stationary with autocorrelation
R,(r) and power spectral density S,(w). If @ is a uniformly distributed random variable over the
range 0 < @ < 2x, find the autocorrelation and power spectral density of y(r). Assume x(¢) and ¢ are
independent.

Evaluate P/, the probability of error when a binary “07 is transmitted. for the threshold detection
system of Section 3.4,

For the threshold detection system of Section 3.4, determine the SNR (in dB) required for error
probabilities of 1072, 1077, and 1075,

Consider a threshold detection receiver where a binary “17 is transmitted as vy, and a binary “("
is transmitted as —uvy. If additive gaussian white noise is present with the received signal, choose a
reasonable threshold value, and evaluate the probability of error for the two cases. Compare the SNR
required for a given P, of this system with the corresponding result derived in Section 3.4,

The Y-factor method is used to measure the equivalent noise temperature of a component, with a hot
load of Ty =320 K and a cold load of T, =77 K. If the ¥-factor ratio is measured to be 0.608 dB,
what is the noise figure of the component under test?

A certain transmission line has a noise figure F =2 dB at a temperature of 1, = 290 K. Calculate and
plot the noise figure of the line (in dB) as its physical temperature ranges from 0 K to 1000 K.

An amplifier with a gain of 15 dB, a bandwidth of 200 MHz, and a noise figure of 3 dB feeds a
detector/demodulator with a noise temperature of 800 K. Find the noise figure and equivalent noise
temperature of the overall system,

Consider the wireless local arca network receiver front end shown below, where the bandwidth of the
bandpass filter is 150 MHz centered at 2.4 GHz. If the system is at room temperature, find the noise
figure of the overall system. What is the output SNR if the input signal level is —85 dBm? Can the
components be rearranged to give a better noise figure?

= | A
L=15dB G=10dB G=15dB
F=2dB F=2dB

A digital PCS receiver front-end circuit is shown below. The operating frequency is 18051880 MHz,
and the physical temperature of the system is 300 K. A noise source with N; = —95 dBm is applied 1o
the receiver input. What is the equivalent noise temperature of the source over the operating bandwidth?
What is the noise figure of the amplifier? What is the noise figure of the cascaded transmission line
and amplifier? What is the total noise power output of the receiver over the operating bandwidth?

Transmission

Noise ! .
source line ATpllher

- Sy

i jm L6 i2am

-95 dBm L=15dB T =180 K

Prove that, for fixed loss L = 1, the equivalent noise temperature of a mismatched lossy line given in
(3.87) is minimized when [I"y| = 0.
A matched resistive power divider is shown below, with its scattering matrix. If port 3 is terminated in

a matched load Z; derive an expression for the noise figure from port 1 to port 2. Assume the divider
is at physical teOperature 7.
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3.22 A lossless matched reactive power divider is shown below, with its scattering matrix. If port 3 is
terminated in a matched load, find the noise figure of the divider and discuss the source of the

resulting thermal noise. Assume the system is at physical temperature Tj.

@ so@

b3 | — f—ﬂtd‘
-
3]

= -1
[s1= |v2 2
= 4 1
V2 2 2

3.23 Consider the lossless matched quadrature hybrid junction shown below, with the scattering matrix as
given. Find the noise figure between ports 1 and 2, when ports 3 and 4 are terminated in matched
loads. How does this result change when a dissipative power loss of L is included in each of the
branch lines? Assume the system is at physical temperature 7.

@ @

*
=L ]lj001

@ ©) I51=V2 (100
0140

Zy Zy

3.24 Alossy line at temperature T feeds an amplifier with noise figure F, as shown below. If an impedance
mismatch I" is present at the input of the amplifier, find the overall noise figure of the system,

Zi L 1 P

3.25 A balanced amplifier circuit is shown below. The two amplifiers are identical, each with power gain G
and noise figure F. The two quadrature hybrids are also identical, with an insertion loss from the input
to either output of L >1 (the scattering matrix for a lossless hybrid is given in Problem 3.23), Derive
an expression for the overall noise figure of the balanced amplifier. What does this result reduce to
when the hybrids are lossless?

G, F Z

mA W
>< > Bl X o Sn' Nﬂ
(’7_% L - :

3.26 A receiver subsystem has a noise figure of 6 dB, a | dB compression point of 21 dBm (referenced
to output), a gain of 30 dB, and a third-order intercept point of 33 dBm (referenced to output). If the
subsystem is fed with a noise source with N, =—105 dBm, and the desired output SNR is 8 dB, find
the linear and spurious free dynamic ranges of the subsystem. Assume a system bandwidth of 20 MHz.

3.27 Find the third-order intercept point for the problem of Example 3.7 when the positions of the amplifier
and mixer are reversed.
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3.28 In practice, the third-order intercept point is extrapolated from measured data taken at input power lev-
els well below P5. For the spectrum analyzer display shown below, where A P is the difference in power
between Py, and Py, . show that the third-order intercept point is given by Py = P, + 1AP. s
this referenced at the input or output?

P‘,‘,1 I~ +
AP
PE:\J]'—wQ +

! [
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Antennas and Propagation
for Wireless Systems

The propagation of electromagnetic energy is the key physical phenomenon that makes
wireless communications possible. In this chapter we study antennas and propagation effects,
which can be viewed as forming the channel that links the transmitter to the receiver in a
Wireless communications system. Our goal is to characterize antennas from a systems point
of view to enable the calculation of the received signal and noise powers, in terms of transmit
‘power, range, antenna gain, efficiency, and background noise. We will also want to consider
propagation effects through the environment, including reflection, diffraction, scattering, and
dttenuation. Such effects are often critical in mobile communications systems, especially when
‘multipath scattering leads to signal fading.

4.1 ANTENNA SYSTEM PARAMETERS

In this section we describe the basic characteristics and parameters of antennas that are
needed for our study of the wireless communications link. We are not interested here in the
detailed electromagnetic theory of operation of antennas, but rather the systems aspect of
the operation of an antenna in terms of its radiation patterns, directivity, gain, efficiency,
and polarization, References [1]-[3] can be reviewed for a more in-depth treatment of the
fascinating subject of antenna theory and design. Figure 4.1 shows some of the different
types of antennas that have been developed for commercial wireless systems.

An antenna can be viewed as a device that converts a guided electromagnetic wave on
a transmission line to a plane wave propagating in free space. Thus, one side of an antenna
appears as an electrical circuit element, while the other side provides an interface with a
propagating plane wave. Antennas are inherently bidirectional, in that they can be used for
both transmit and receive functions.

Figure 4.2 illustrates the basic operation of transmit and receive antennas. The trans-
mitter can be modeled as a Thevenin source consisting of a voltage generator and series
impedance, delivering a transmit power P, to the transmit antenna. The transmit antenna

111
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FIGURE 4.1  Photograph of various antennas used for commercial millimeter wave wireless sys-
tems. Clockwise from top: a high-gain 38 GHz reflector antenna with radome, 4
24 GHz microstrip array, a GPS antenna, a 38 GHz microstrip array, a 28 GHz
microstrip array. a 24 GHz dual-beam microstrip array, and a planar LMDS array,
(Courtesy of H. Syrigos, Alpha Industries, Inc.. Woburn, Mass.)

radiates a spherical wave which, at large distances, approximates a plane wave, at least
over a localized area. The receive antenna intercepts a portion of the propagating wave, and
delivers a receive power P, 1o the receiver load impedance.

Fields and Power Radiated by an Antenna

While we do not require detailed solutions to Maxwell's equations for our purposes,
we do need to be familiar with the far-zone electromagnetic fields radiated by an antenng,
We consider an antenna located at the origin of a spherical coordinate system, as shown
in Figure 4.3. At large distances, where the localized near-zone fields are negligible, the
radiated electric field of an arbitrary antenna can be expressed as

»—Jkar

E(r,0,¢) = [0F:(0. )+ dFu(0, $)] V/m, (4.1)

r
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Spherical Plane wave

. w;ve J
v, . ) ) ) = 2

Transmit Receive
antenna antenna

FIGURE 4.2  Basic operation of transmit and receive antennas.

where £ is the electric field vector, @ and ¢ are unit vectors in the spherical coordinate system,
r is the radial distance from the origin, and kg = 27/ is the free-space propagation constant,
with wavelength i = ¢/f = 3 x 10%/f (for frequency in Hz). Also defined in (4.1) are the
pattern functions, Fy(0, ¢) and Fu(6, ¢). The interpretation of (4.1) is that this electric
field propagates in the radial direction, with a phase variation of e~/%" and an amplitude
variation of 1/r. The electric field may be polarized in either the 6 or ¢ directions, but
not in the radial direction. These are some of the well-known characteristics of rransverse
electromagnetic (TEM) waves.

Whenever we have a propagating electric field, there must be an associated magnetic
field, For the TEM wave of (4.1) the magnetic fields can be found as

Eq

Hy = (4.2a)
v Mo
—F
Hy=—2 (4.2b)
1o

where ny = 377 €2, the wave impedance of free space. Note that the magnetic field vector
is also polarized only in the transverse direction. The Poynting vector for electromagnetic
fields is given by the cross product of the electric and magnetic field vectors:

§=FE x H* Wim?, (4.3)

=Y

FIGURE 4.3  The spherical coordinate system.,
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and the time-average Poynting vector is

Save = 3 Re(S} = L Re(E x H"} Wim®. (4.4)

Far-Field Distance

We mentioned above that at large distances the near fields of an antenna are negligible,
and the radiated electric field can be written as in (4.1). We can give a more precise meaning
to this concept by defining the far-field distance as the distance where the spherical wave
front radiated by an antenna becomes a close approximation to the ideal planar phase front
of a plane wave. This approximation applies over the aperture area of the antenna, and so
depends on the maximum dimension of the antenna. If we call this dimension [, then the
far-field distance is defined as

2p?
a

This result is derived from the condition that the actual spherical wave front radiated hy
the antenna departs less than 7 /8 = 22.5° from a true plane wave front over the maximum
extent of the antenna. For electrically small antennas, such as short dipoles and small loops,
this result may give a far-field distance that is too small: in this case, a minimum value of
Ry = 24 should be used.

Rff = m. (4.5}

A parabolic reflector antenna used for reception with the Direct Broadcast System
(DBS)is 18" in diameter and operates at 12.4 GHz. Find the operating wavelength
and the far-field distance for this antenna.

) > EXAMPLE 4.1 FAR-FIELD DISTANCE OF AN ANTENNA
o 1)) >>

Solution
The operating wavelength at 12.4 GHz is

3 x 108
)\ = —L—‘ = ——'—'—"—X = 2.42 cm.
f o124 % 10°

The far-field distance is found from (4.5), after converting 18" to 0.457 m:

2D  2(04577

Rpy=—=——=173m
=7, 0.0242
The actual distance from a DBS satellite to earth is about 36,000 km. so it is safe
to say that the receive antenna is in the far field of the transmitter. O

Radiation Intensity
Next we define the radiation intensity of the radiated electromagnetic field as
- r e o
U@, ¢) =r|Swl =5 Re{Esf x H}$ + Egp x H;0)

2

r 1 5 5 (4'6}-
= = E z + E 2 — F 7 + F i W‘
27?0[[ ol + 1Egl?) 2??““ ol? + 1 Fel?]

where (4.1), (4.2), and (4.4) were used. The units of the radiation intensity are Watts (W),
or Watts per unit solid angle, since the radial dependence has been removed. The radiation’
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intensity gives the variation in radiated power versus position around the antenna, We can
find the total power radiated by the antenna by integrating the Poynting vector over the
surface of a sphere of radius » that encloses the antenna. This is equivalent to integrating
the radiation intensity over a unit sphere:

27 " Zr b4
P = f f Savg - 1% sin@ df dp = f f U@, p)sind dé de. (4.7)
=0 J =0 ={) J =0

Radiation Patterns

The radiation pattern of an antenna is a plot of the magnitude of the far-zone field
strength versus position around the antenna, at a fixed distance from the antenna. Thus the
pattern can be plotted from the pattern functions Fy(8, ¢) or Fy(0, ¢). versus either the
angle £ (for an elevation plane pattern) or the angle ¢ (for an azimuthal plane pattern). The
choice of plotting either Fy or £y is dependent on the polarization of the antenna.

A typical antenna pattern is shown in Figure 4.4, for the particular case of a small array
of dipoles often used in cellular telephone base stations. This pattern is plotted in polar form,
versus the azimuth angle ¢. The plot shows the relative variation of the radiated power of the
antenna in dB, normalized to the maximum value. Since the pattern functions are propor-
tional to voltage, the radial scale of the plot is computed as 20 log | F(6. ¢)|; alternatively,
the plot could be computed in terms of the radiation intensity as 10 log |U(#, ¢)|. The plot
shows that this antenna has maximum radiation in the ¢ = () direction, and theoretically
zero radiation at the angles ¢ = £42° and ¢ = +90°.

There are several features of radiation pattern plots with which we should be familiar.
First, as in the example of Figure 4.4, an antenna pattern may exhibit several distinct radiation

FIGURE 4.4 A typical antenna radiation pattern.
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lobes, with different maxima in different directions. The lobe having the maximum value
is called the main beam, while those lobes at lower levels are called sidelobes. Thus the
pattern of Figure 4.4 has one main beam at ¢ = 0, and two sidelobes located at ¢ = +60°,
The level of these sidelobes is 14 dB below the level of the main beam.

A fundamental property of an antenna is its ability to focus power in a given direction,
to the exclusion of other directions. Thus, an antenna with a broad main beam can transmit
(or receive) power over a wide angular region, while an antenna having a narrow main beam
will transmit (or receive) power over a small angular region. A measure of this focusing
effect is the 3 dB beamwidth of the antenna, defined as the angular width of the main beam
at which the power level has dropped 3 dB from its maximum value (its half-power points).
The 3 dB beamwidth of the pattern of Figure 4.4 is 36”.

Antennas having a constant pattern in the azimuthal direction are called omnidirec-
tional, and are useful for applications such as broadcasting or for handheld cellular phones,
where it is desired to transmit or receive equally in all directions. Patterns that have relatively
narrow main beams in both planes are known as pencil beam antennas, and are useful in
applications requiring point-to-point transmission, such as satellite links.

Directivity

Another measure of the focusing ability of an antenna is the directivity, defined as the
ratio of the maximum radiation intensity in the main beam to the average radiation intensity
over all space:

Unax _ 471 Uppax = 4 Uy

D — = - = E]
U:wg Praa j:,;'r:u f?;iﬂ Uie, ) sinf dé L’fﬁf)

(4.8).

where (4.7) has been used for the radiated power. Directivity is a dimensionless ratio of
power, and is usually expressed in dB as D(dB) = 101og (D).
An antenna that radiates equally in all directions is called an isorropic antenna. Applying

the integral identity that
s i
[ f sinfl dé d¢p = 4,
Jo=0Jp=0

to the denominator of (4.8) for U(#, ¢) = 1 shows that the directivity of an isotropic elemen|
is D = 1. or 0 dB. Since the minimum directivity of any antenna is unity, directivity is often.
stated as relative to the directivity of an isotropic radiator, and written as dBi.
Beamwidth and directivity are both measures of the focusing ability of an antenna:
an antenna pattern with a narrow main beam will have a high directivity, while a pattem
with a wide beam will have a lower directivity. We might therefore expect a direct relation
between beamwidth and directivity. but in fact there is not an exact relationship between;%
these two quantities. This is because beamwidth is only dependent on the size and shape:
of the main beam, whereas directivity involves integration of the entire radiation patter,
Thus it is possible for many different antenna patterns to have the same beamwidth, buf
quite different directivities due to differences in sidelobes or the presence of more than one
main beam. With this qualification in mind, however, it is possible to develop approximate.
relations between beamwidth and directivity that apply with reasonable accuracy to a large
number of practical antennas. One such approximation that works well for antennas wifh
pencil beam patterns is the following:
. 32,400

D=0, 49
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where #; and ¢ are the beamwidths in two orthogonal planes of the main beam, in degrees.
This approximation does not work well for omnidirectional patterns because there is a
well-defined main beam in only one plane for such patterns.

) > EXAMPLE 4.2 PATTERN CHARACTERISTICS OF A DIPOLE ANTENNA
3 :)) >>

The far-zone electric field radiated by an electrically small wire dipole antenna on
the z axis is given by,

— fkor

Ey(r,60,¢) = Vysinf V/m

Ey(r,0,¢)=0.

r

Find the main beam position of the dipole, its beamwidth, and its directivity.

Solution
The radiation intensity for the above far field is

U, ¢) = Csin* 8,

where the constant C = V; /2no. The radiation pattern is seen to be independent
of the azimuth angle ¢, and so is omnidirectional in the azimuth plane. The pattern
has a “donut™ shape, with nulls at # =0" and ¢ = 180" (on the z axis), and a
beam maximum at # = 90° (the horizontal plane). The angles where the radiation
intensity has dropped by 3 dB is given by the solutions to

sin @ = 0.5,

thus the 3 dB, or half-power, beamwidth is 135° — 45° = 90°.
The directivity is calculated using (4.8). The denominator of this expression is

T 27 T
f f U(G.¢:)sin9d9d¢>=2:r€f sin39d9=2ﬂ:C(i) =@‘
o=0 Jp=0 #=0 3 3

where the required integral identity is listed in Appendix B. Since Uy = C, the
directivity reduces to

D =—-=176dB. O

r2 |

Radiation Efficiency

Resistive losses, due to nonperfect metals and dielectric materials, exist in all antennas.
Such losses result in a difference between the power delivered to the input of an antenna
and the power radiated by that antenna. As with other electrical components, we can define
the radiation ¢fficiency of an antenna as the ratio of the desired output power to the supplied
input power

Prud Phl — P[nss “ Plosx

erﬂd:E:Tzl P, ' (4[0}

where Py is the power radiated by the antenna, P, is the power supplied to the input of the
antenna, and Py, is the power lost in the antenna. Efficiency is always less than or equal
to unity, and is commonly expressed as a percent. Radiation efficiency has been defined in
(4.10) for transmit antennas, but applies as well to receiving antennas.
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Note that there are other factors that can contribute to the effective loss of transmil
power, such as impedance mismatch at the input to the antenna, or polarization mismatch
with the receive antenna. But these losses are external to the antenna, and could be eliminated
by the proper use of matching networks, or the proper choice and positioning of the receive
antenna. Therefore losses of this type should not be attributed to the antenna itself, as are:
dissipative losses due to metal conductivity or dielectric loss within the antenna.

Gain

Recall that antenna directivity is a function only of the shape of the radiation pattem
(the radiated fields) of an antenna, and is not affected by losses in the antenna. In order 1o
account for the fact that an antenna with radiation efficiency less than unity will not radiate
all of its input power, we define antenna gain as the product of directivity and efficiency:

G = enyD. (4.11)

Thus, gain is always less than or equal to directivity. Gain can also be computed directly,
by replacing Py, in the denominator of (4.8) with P, since by the definition of radiation
efficiency in (4.10) we have Py = e, Pn. Gain is usually expressed in dB, as G(dB) =
10log (G).

Aperture Efficiency

Many types of antennas can be classified as aperture antennas, meaning that the antenng
has a well-defined aperture area from which radiation occurs. Examples include reflector
antennas, horn antennas. lens antennas, and array antennas. For such antennas, it can be
shown that the maximum directivity that can be obtained from an aperture of area A is

4 A
=

For example, a rectangular horn antenna having an aperture 2A x 34 could have a
maximum directivity of 245, In practice, there are several factors that can serve (o reduce
the maximum directivity, such as nonideal amplitude or phase characteristics of the aperture
field, aperture blockages or, in the case of reflector antennas, spillover of the feed pattern..
For this reason we can define an aperture efficiency as the ratio of the actual directivity
of an aperture antenna to the maximum directivity given by (4.12). Then we can write the
directivity of an aperture antenna as

Dmg;( = (4‘. |2).

4w A
Az

Aperture efficiency is always less than or equal to unity.

D= Cap

(4.13)

Effective Area

The above definitions of antenna directivity, efficiency, and gain were stated in terms of
a transmitting antenna, but apply to receiving antennas as well. For a receiving antenna itis
also of interest to determine the received power for a given incident plane wave field. This
is the converse problem to finding the power density radiated by a transmitting antenng
as given in (4.4); both of these cases are illustrated in Figure 4.2. Finding received power
is important for the derivation of the radio system link equation, to be discussed in
following section.
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We expect that received power will be proportional to the power density, or Poynting
vector, of the incident wave. Since the Poynting vector has dimensions of W/m?, and the
received power P, has dimensions of W, the proportionality constant must have units of
area. Thus we write

Pr= fd‘{.'Sn\u'g- (4.14)

where A, is defined as the effective aperture area of the receive antenna. The effective
aperture area has dimensions of m?, and can be interpreted as the “capture area” of a receive
antenna, intercepting part of the incident power density radiated toward the receive antenna.
P, in (4.14) is the power available at the terminals of the receive antenna, as delivered to a
matched load.

The maximum effective aperture area of an antenna can be shown to be related to the
directivity of the antenna as [1], [2]

DA
g '
where A is the operating wavelength of the antenna. For electrically large aperture antennas
the effective aperture area is often close to the actual physical aperture area. But for many
other types of antennas, such as dipoles and loops, there is no simple relation between the
physical cross-sectional area of the antenna and its effective aperture area. The maximum
effective aperture area as defined above does not include the effect of losses in the antenna,
which can be accounted for by replacing D in (4.15) with G, the gain, of the antenna.

A, = (4.15)

Antenna Polarization

Polarization of an electromagnetic wave is defined as the orientation of the radiated
electric field vector. For the case of a plane wave propagating along the z axis, the electric
field may only have components in the x- or y directions, so the general expression for the
electric field is of the form

E = (Eoxk + Eqy$)e %2, (4.16)

where Ej, and Eq, are the independent amplitudes of the x and y components. If Eqy, = |
and Ey, = 0, the field is linearly polarized in the x direction. If Eg, = Ey, = 1, the field
is linearly polarized in the direction 45° between the x- and y axes. In general, as long as
Eq, and Ey, have the same phase, the wave will be linearly polarized.

Now consider the case in which the x and y components have equal magnitudes and a
90" phase shift, suchas Eq, = 1 and Ey, = j. Then theelectric field still lies in the x-y plane,
but now rotates counterclockwise when viewed toward the z-axis. To see this, convert the
phasor expression of (4.16) to the time domain by multiplying by e/*" and taking the real part:

&(x, y.z,f) = Re{(% + jPle hiei®'} = Refgel @D 4 geilot—hiztn/D)} §.ii
(4.17)
= X cos{at + koz) — ¥ sin(wt — kpz).

For a given point on the z-axis, this result shows that the electric field vector rotates
from the x-axis, to the —y-axis,.... as time increases. Since the direction of rotation is
counterclockwise when viewed toward the direction of propagation, this is referred to as
left-hand circular polarization, or LHCP. Right-hand circular polarization (RHCP) can be
obtained by changing the sign of the Ey, term.

If the magnitudes of Egy, and Ey, are not equal, or if the phase difference is not exactly
907, then the electric field amplitude will vary as the field vector rotates around the z axis.
This is called elliptical polarization. and is the most general case.
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4.2

According to IEEE standards, the polarization of an antenna is defined as the polar-
ization of the radiated field when the antenna is operating as a transmitter. For a dipole on
the z axis, as in Example 4.2, the radiated field has only an Ey; component in the far zone,
In the main beam of the antenna, which occurs at # = 90°, the electric field is vertically
oriented at any position around the axis of the dipole, and so the dipole is said to be linearly
polarized in the vertical direction. We will see in the next section that maximum power
transfer between two antennas requires that they have the same polarization.

THE FRIIS EQUATION

In this section we derive the Friis equation, which is the fundamental result for radio
system links. It expresses the received power in terms of transmitted power, antenna gains,
range, and frequency, and thus forms the basis for all wireless system design. We will also
discuss equivalent circuits for transmit and receive antennas, and a modification to the Friig
equation to account for impedance or polarization mismatches.

The Friis Equation

A general radio system link is shown in Figure 4.5, where the transmit power is £
the transmit antenna gain is G, the receive antenna gain is G,, and the received power
(delivered to a matched load) is P,. The transmit and receive antennas are separated by the
distance R.

By conservation of energy, the power density radiated by an isotropic antenna (D =
1 = 0 dB) at a distance R is given by,

Py
e = e

where P, is the power radiated by the antenna. This result is deduced from the fact tha
we must be able to recover all of the radiated power by integrating over a sphere of radiu
R surrounding the antenna; since the power is distributed isotropically, and the area of ¢
sphere is 4w R?, (4.18) follows. If the transmit antenna has a directivity greater than () dB,
we can find the radiated power density by multiplying by the directivity, since directivity
is defined as the ratio of the actual radiation intensity to the equivalent isotropic radiation
intensity. Also, if the transmit antenna has losses, we can include the radiation efficiency
factor, which has the effect of converting directivity to gain. Thus, the general expression
for the power density radiated by an arbitrary transmit antenna is

_GA
T dg R?
If this power density is incident on the receive antenna, we can use the concept of effective:
aperture area, as defined in (4.14), to find the received power;
G, P A,

4 R*

W/m?, (4.18)

S W/m?. (4.19)

P, = ArSu\«'g =

FIGURE 4.5  Basic radio system.
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Next, (4.15) can be used to relate the effective area to the directivity of the receive antenna.
Again, the possibility of losses in the receive antenna can be accounted for by using the
gain (rather than the directivity) of the receive antenna. So the final result for the received
power is

G522

e, R i 420
@Ry (4.20)

This is the Friis equation, which addresses the fundamental question of how much power
is received by a radio antenna. In practice, the value given by (4.20) should be interpreted
as the maximum possible received power, as there are a number of factors that can serve to
reduce the received power in an actual radio system. These include impedance mismatch
at either antenna, polarization mismatch between the antennas, propagation effects leading
to attenuation or depolarization, and multipath effects that may cause partial cancellation
of the received field.

Observe in (4.20) that the received power decreases as 1/R? as the separation between
transmitter and receiver increases. This dependence is a result of conservation of energy.
While it may seem to be prohibitively large for large distances, in fact the space decay
of 1/R* is much better than the exponential decrease in power due to losses in a wired
communications link. This is because the attenuation of power on a transmission line varies
as e **“(where @ is the voltage attenuation constant of the line), and at large distances the
exponential function always decreases faster than an algebraic dependence like 1/R*. Thus
for long distance communications, radio links will perform better than wired links. This
conclusion applies to any type of transmission line, including coaxial lines, waveguides,
and even fiber optic lines. (It may not apply, however, if the communications link is land or
sea-based, so that repeaters can be inserted along the link to recover lost signal power.)

A geosynchronous satellite orbiting 36,900 km above the earth has a transmit
power of 2 W, a transmit antenna gain of 37 dB, and operates at 20 GHz. If the
receiving station on earth has an antenna gain of 45.8 dB, find the received power.
Ignore possible mismatch and propagation loss effects.

) > EXAMPLE 4.3 COMMUNICATIONS SATELLITE LINK LOSS
o)))>>

Solution
We first compute the quantity 47R/A = 3.09 x 10'%, Then we can evaluate the
Friis equation of (4.20) using dB:
- 47R\?
P(dB) = G (dB) + G,(dB) + P,(dB) — 10log -
=458+ 37.0+33.0 — 209.8 = —94.0 dBm = 3.98 x 107" mW,
O

Effective Isotropic Radiated Power

As can be seen from the Friis equation of (4.20), received power is proportional to the
product P, G,. These two terms, the transmit power and transmit antenna gain, characterize
the transmitter, and in the main beam of the antenna the product P, G, can be interpreted
equivalently as the power radiated by an isotropic antenna with input power P, G,. Thus,
this product is defined as the effective isotropic radiated power (EIRP):

EIRP = PG, W. (4.21)
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(a) (h)

FIGURE 4.6 Effective isotropic radiated power. (a) An antenna with G > | with input power P|
radiates a power density 8y at distance R. (b) An isotropic antenna with input power
P, radiates the same power density at distance K.

For a given frequency, range, and receiver antenna gain, the received power is propor-
tional to the EIRP of the transmitter, and can only be increased by increasing the EIRP. This
can be done by increasing the transmit power, or the transmit antenna gain. or both.

Figure 4.6 illustrates the meaning of EIRP. The antenna of Figure 4.6a has a gain G
greater than unity, and an input power Py. Thus, at a distance R in the main beam of the
antenn, the radiated power density is given by (4.19) as

PG

Sy = (4.22a)

The antenna of Figure 4.6b is isotropic, with gain G = 1 (0 dB), and input power Py,
We choose the input power so that the radiated power density is equal for both cases. Thus
for the antenna of Figure 4.6b we have

P
4 R?
Comparison with (4.22a) shows that P, = G P|. Both cases will then appear equivalent a
seen by a receiver, but the transmitter of Figure 4.6a requires less input power by the factor
1/G. Of course, the coverage of the antenna of Figure 4.6a is much less than that of the
omnidirectional antenna of Figure 4.6b. and may not be usable in all applications.

A related quantity is the effective radiated power (ERP), which is defined relative tog
half-wave dipole, rather than an isotropic element. ERP is sometimes used for mobile
communications systems because of the prevalence of dipole antennas for base station’
antennas. Since the gain of a half-wave dipole is 2.2 dB. we have the following relation
with EIRP:

Sp = W/m?, (4.22h)

ERP(dB) = EIRP(dB) 4+ 2.2 dB. (4.23)

Impedance Mismatch

The derivation of the Friis equation as given in (4.20) assumed that the transmit and
receive antennas were impedance matched to the transmitter and receiver, respectively, Ay
with any RF or microwave system, an impedance mismatch will reduce the power deliv
from a source to a load by the factor (1 — |T"|?), where I' is the reflection coefficient between
the source and the load [4]. In a radio link there is the possibility of an impedance mismatel
between the transmitter and the transmit antenna, as well as between the receive antenna an
the receiver. Thus the Friis formula of (4.20) can be multiplied by the impedance mismatd
Jactor, ey, defined as

emp = (1 — [T )1 = |, ), (4.24)
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to account for the reduction in received power due to impedance mismatch effects at the
transmitter and receiver. In (4.24) I, is the reflection coetfficient at the transmitter, and I,
is the reflection coefficient at the receiver. Note that impedance mismatch is not included
in the definition of antenna gain. This is because mismatch is dependent on the external
source or load impedances to which the antenna is connected, and thus is not a property of
the antenna itself. It is always possible to match an antenna to a given source or load by
using an appropriate external tuning network.

Polarization Mismatch

Maximum transmission between (wo antennas requires that both antenna be polarized
in the same direction. If a transmit antenna is vertically polarized, for example, maximum
power will be delivered to a vertically polarized receiving antenna, while zero power would
be delivered to a horizontally polarized receive antenna, Polarization matching of antennas
is therefore critical for optimum communications system performance.

Since receive voltage is proportional to the dot product of the electric field and the
polarization vector of the receive antenna, we can account for polarization mismatch effects
by multiplying the Friis equation by the polarization loss factor, defined as

A A i y
€pol = |€r &7, (4.25)

In (4.25) é; is a unit vector representing the polarization of the electric field of the incident
plane wave. That is,

E,‘ = é,‘ E"ﬁ_‘rkur.

Similarly, é, is a unit vector representing the polarization of the electric field of the receive
antenna when it is operating as a transmit antenna. That is,

E, = é,Ee %

A transmitting antenna is circularly polarized (LHCP), and transmits in the direc-
tion of the horizontal z axis. Find the polarization loss factor for the following
receive antennas:

) > EXAMPLE 44 POLARIZATION LOSS FACTOR
o :))))

(a) a vertically polarized dipole
(b) a LHCP antenna
(c) a RHCP antenna

Solution
The unit vector for the polarization of the incident field is, from (4.17),

& =&+ jH/V2.
For case (a) the polarization vector for a vertically polarized antenna is
ér =79,
so the polarization loss factor is

. s |G+ 5P
€pol = ey &1 = = a8 =

0.5 =—-3dB.
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We assumed the y axis was in the vertical direction, but the same result would
be obtained if the x axis were used. This result shows that the linearly polarized
receive antenna captures only half the incident power from the circularly polarized
transmitted wave.

For case (b) the polarization vector for an LHCP antenna transmitting along
the —z axis (toward the incident wave) is

& =& — j9HIV2,

so the polarization loss factor is

=1=0dB.

L @@= PP
€pal = |ei' ! er| _— 4

In this case the receive antenna is polarization matched to the transmit antenna,
For case (¢) the polarization vector for a RHCP antenna transmitting along the —z
axis (toward the incident wave) is

=@+ jNIV2,
so the polarization loss factor is

L EHID G+ P
ep0i=lei‘er| — 4

This receive antenna is completely mismatched to the polarization of the transmit-
ted wave. @)

=

Equivalent Circuits for Transmit and Receive Antennas

As discussed in the beginning of this section, an antenna appears as a circuit elementat.
its terminals. For a transmitting antenna, power is delivered to the antenna from a generator
and converted to a propagating electromagnetic wave. For a receiving antenna, input power
is delivered to the antenna in the form of a plane wave, and converted to received power
at the terminals of the antenna. In both cases the terminals of the antenna appear as an
equivalent circuit port. Figure 4.7a shows the case of a transmitting antenna, where the
transmitter is represented as a Thevenin source with voltage generator V, and generalor
impedance Z,, and the antenna impedance Z, appears as a load. The power dissipated in
this load represents power radiated by the antenna, as well as power dissipated due to loss
in the antenna. The case of a receiving antenna is shown in Figure 4.7b, where the voltage
generator V,; and generator impedance Z, represents power received from the inciden

Z Zy
vkii; %zﬁ VA(:J:F; %21

Generator Antenna Antenna Load

(a) (b)

FIGURE 4.7  Equivalent circuits for (a) transmit, and (b) receive antennas.
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plane wave, and Z; represents the receiver load impedance. It is important to note that Z 4
is a property of the antenna itself, and is the same for both transmit and receive operation.

ANTENNA NOISE TEMPERATURE

We have seen how noise is generated in a receiver due to lossy components and active
devices, but noise can also be delivered to the input of a wireless receiver by the receive
antenna. Antenna noise may be received from the external environment, or generated in-
ternally as thermal noise due to losses in the antenna itself. While noise produced within a
receiver is controllable to some extent (by judicious design and component selection), the
noise received from the environment by a receiving antenna is generally not controllable,
and may exceed the noise level of the receiver itself. Thus it is important that we are able to
characterize the noise power delivered to a radio receiver by its antenna. In this section we
will study the noise characteristics of receiving antennas, and define the equivalent noise
temperature of an antenna.

Background and Brightness Temperature

Consider the three situations shown in Figure 4.8. In Figure 4.8a we have the simple
case of a resistor at temperature 7, producing an available output noise power given by
(3.25):

No. = ETH, (4.26)

where B is the system bandwidth, and k is Boltzmann’s constant. In Figure 4.8b we have an
antenna enclosed by an anechoic chamber at temperature 7'. The anechoic chamber appears
as a perfectly absorbing enclosure, and is in thermal equilibrium with the antenna. Thus
the terminals of the antenna are indistinguishable from the resistor terminals of Figure 4.8a
(assuming an impedance-matched antenna), and therefore the antenna produces the same
output noise power as the resistor of Figure 4.8a. Lastly, Figure 4.8¢ shows the same
antenna directed at the sky. If the main beam of the antenna is narrow enough so that
it sees a uniform region at physical temperature 7, then the antenna again appears as a
resistor at temperature 7', and produces the output noise power given in (4.26). This is true
regardless of the radiation efficiency of the antenna, as long as the physical temperature of the
antenna is 7.

In actuality an antenna typically sees a much more complex environment than the
cases depicted in Figure 4.8, A general scenario of both naturally occurring and man-made

VYWV M
- o N
- L Q
N, Sky at
T temperature
Y T
Anechoic N,
chamber
{a) (b) (e

FIGURE 4.8  [llustrating the concept of background temperature. (a) A resistor at temperature 7.

(b) An antenna in an anechoic chamber at temperature 7', (¢) An antenna viewing a
uniform sky background at temperature 7'.
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FIGURE 4.9  Natural and man-made sources of background noise.

noise sources is shown in Figure 4.9, where we see that an antenna with a relatively broad
main beam may pick up noise power from a variety of origins. In addition, noise may b
received through the sidelobes of the antenna pattern, or via reflections from the ground ar
other large objects. As in Chapter 3, where the noise power from an arbitrary white noise
source was represented as an equivalent noise temperature, we define the background noise
temperature, Ty, as the equivalent temperature of a resistor required to produce the same.
noise power as the actual environment seen by the antenna. Some typical background noise:
temperatures that are relevant at low microwave frequencies are:

® sky (toward zenith) 3-5K
e sky (toward horizon) 50-100 K
e ground 290-300 K

The overhead sky background temperature of 3-5 K is the cosmic background radiation
believed to be a remnant of the big bang at the creation of the universe. This would be the
noise temperature seen by an antenna with a narrow beam and high radiation efficiency
pointed overhead, away from “hot” sources such as the sun or stellar radio objects. The
background noise temperature increases as the antenna is pointed toward the horizon because
of the greater thickness of the atmosphere, so that the antenna sees an effective background
closer to that of the anechoic chamber of Figure 4.8b. Pointing the antenna toward the
ground further increases the effective loss, and hence the noise temperature.

Figure 4.10 gives a more complete picture of the background noise temperature, shoy-
ing the variation of T versus frequency, and for several elevation angles [5]. Note that the
noise temperature shown in the graph follows the trends listed above, in that it is lowest for
the overhead sky (68 = 90°), and greatest for angles near the horizon (¢ = 07). Also note the
sharp peaks in noise temperature that occur at 22 GHz and 60 GHz, The first is due to the
resonance of molecular water, while the second is caused by resonance of molecular oxy-
gen. Both of these resonances lead to increased atmospheric loss, and hence increased noise.
temperature. The loss is great enough at 60 GHz that the atmosphere effectively appearsa.
a matched load at 290 K. While loss in general is undesirable, these particular resonances
can be useful for remote sensing applications [4], or for using the inherent attenuatiog
of the atmosphere to limit propagation distances for cellular communications over small
regions,

When the antenna beamwidth is broad enough that different parts of the antenna patten)
see different background temperatures, the effective brightness temperature seen by the
antenna can be found by weighting the spatial distribution of background temperature by
the pattern function of the antenna. Mathematically we can write the brighiness temperature
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FIGURE 4.10 Background noise temperature of sky versus frequency. # is the elevation angle

measured from the horizon. Data are for sea level, with surface temperature of 15°C,
and surface water vapor density of 7.5 gm/m’.

T}, seen by the antenna as

2T T8, $)DO, ) sin 6 dO dg
T, = jﬁ_u .Lr_u .:* ) 4.27)
Jpeo oo DO, $)sin® dO dép

where Tg(#, ¢) is the distribution of the background temperature, and D(#, ¢) is the di-
rectivity (or the power pattern function) of the antenna. Antenna brightness temperature is
referenced at the terminals of the antenna. Observe that when 7 is a constant, (4.27) re-
duces to T}, = Ty, which is essentially the case of a uniform background temperature shown
in Figure 4.8b or 4.8¢. Also note that this definition of antenna brightness temperature does
not involve the gain or efficiency of the antenna, and so does not include thermal noise due
to losses in the antenna.

Antenna Noise Temperature

If the antenna has dissipative loss, so that the radiation efficiency ey is less than unity,
then the power available at the terminals of a receive antenna is reduced by the factor
¢raq from that intercepted by the antenna. This applies to received noise power, as well as
received signal power, so the noise temperature of the antenna will be reduced from the
brightness temperature given in (4.27) by the factor ¢qq. In addition. thermal noise will be
generated by resistive losses in the antenna, and this will increase the noise temperature of
the antenna.

The overall problem of a lossy antenna at physical temperature T}, viewing a background
noise temperature distribution T can be represented by the system shown in Figure 4,11,
The lossy antenna is modeled as an ideal antenna with e¢,,q = 1, followed by an attenuator
having a power loss factor of L > 1. at physical temperature 7),. Since radiation efficiency is
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Brightness Antenna
temperature temperature
Background Q Ty Altenuator Ty
temperature z,
Ty (0, d)
Ideal L= 1 =1
antenna ¢

(e=1)

FIGURE 4.11 [Illustrating the relation of background noise temperature, antenna brightness temper-

ature, and antenna noise temperature. An antenna with dissipative losses is modeled
as an ideal antenna followed by an attenuator.

the ratio of output to input power. it is clear that the relation between the radiation efficiency
of the antenna and the attenuator loss factor is L = 1/eqq. The brightness temperature seen
by the ideal antenna is given by (4.27). The overall noise temperature appearing at the output
terminals can be found by adding the brightness temperature seen by the antenna and the
equivalent noise temperature of the attenuator as given by (3.69). with both reduced by the
loss of the attenuator:

T, (L—1)

Ty= T =t T?‘p = eua Ty + (1 — end)T). (4.28)

The resulting equivalent temperature 74 is called the antenna noise temperature, and isq
combination of the external brightness temperature seen by the antenna and the thermal
noise generated by the antenna. As with other equivalent noise temperatures, the proper
interpretation of T is that a matched load at this temperature will produce the same available
noise power as does the antenna. Note that this temperature is referenced at the outpul
terminals of the antenna; since an antenna is not a two-port circuit element. it does not make
sense to refer its equivalent noise temperature to its “input.”

Observe that (4.28) reduces to T4 = T}, for a lossless antenna with e.q = 1. If the ef-
ficiency is zero, meaning that the antenna appears as a matched load and does not see the
external background noise, then (4.28) reduces to 7y = T, due to the thermal noise gen-
erated by the losses. If an antenna is pointed toward a known background temperature
different than 7y, (4.28) can be used to measure radiation efficiency.

Finally, it is important to realize the difference between radiation efficiency and aper-
ture efficiency, and their effects on antenna noise temperature. While radiation efficiency
accounts for resistive losses, and thus involves the generation of thermal noise, aperture ef-
ficiency does not. Aperture efficiency applies to the loss of directivity in aperture antennas,
such as reflectors, lenses, or horns, due to feed spillover or suboptimum aperture excitation,
and by itself does not lead to any effect on noise temperature that would not be included.
through the pattern of the antenna.

A high-gain antenna has the idealized hemispherical elevation plane pattern shown
in Figure 4.12, and is rotationally symmetric in the azimuth plane. If the antenna is
facing a region having a background temperature T, as given in the figure below,
find the antenna noise temperature. Assume the radiation efficiency is 100%.

) > EXAMPLE 4.5 ANTENNA NOISE TEMPERATURE
.e':))))

Solution
Since eqg = 1, (4.28) reduces to Ty = Tj. The brightness temperature can be
computed from (4.27), after normalizing the directivity to a maximum value
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FIGURE 4.12 Idealized antenna pattern and background noise temperature for Example 4.5,

of unity:

r:ZU Joo T5(6. 9)D(O, ¢)sin6 dO d¢p
[ Ji DO, §)siné d6 dg

T}!=

_ Joo 10sin0.d6 + [0 0.1sin0d6 + [,°,, sin6 do
iy sin@do + f;°,.0.01sin6 do

B —100039“; -0.1 cosﬂﬁf- ~0059]§21
—cos @ |[|} —0.01cos 8| R

1“
_0.00152 4 0.0134 + 0.866

= 86.4 K.
0.0102
This example shows that most of the noise power is collected through the sidelobe
region of the antenna. O
G/T

The antenna noise temperature defined in the previous section is a useful figure of merit
for a receive antenna because it characterizes the total noise power delivered by the antenna
to the input of a receiver. Another useful figure of merit for receive antennas is the G/T
ratio, defined as

G
G/T(dB) = 10log " dB/K, (4.29)
A

where G is the gain of the antenna, and T is the antenna noise temperature. This quantity
is important because the signal-to-noise ratio (SNR) at the input to a receiver is proportional
to G/ Ty. To see this, consider the SNR at the terminals of a receive antenna calculated
using the Friis formula of (4.20) and the antenna temperature of (4.28). The signal power
delivered by the receive antenna to a matched receiver input is

_G,G.PN
"7 (4nRYy

and the noise input to the receiver is N; = kT4 B, where G, is the receiver antenna gain,
G, is the transmitter antenna gain, P, is the transmitter power, R is the distance between
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transmitter and receiver, and B is the radio system bandwidth. Then the SNR at the input to
the receiver is
Si _ G.G/PM _ (G,\GP G\ .30
Ni  kTaBM@nR? — \ T4 ) kB@dnR)*’ '

showing that the received SNR is proportional to G/ T of the receive antenna. Observe that
only the factor G, /Ty in (4.30) is controllable at the receiver, as the remaining factors
are fixed by the transmitter design and location. Thus, for a fixed transmitter, receiver
performance is optimized by maximizing G /T for the receive antenna.

G /T can often be maximized by increasing the gain of the antenna, since this increases
the numerator and usually minimizes reception of noise from hot sources at low elevation
angles. Of course, higher gain requires a larger and more expensive antenna, and high gain
may not be desirable for applications requiring omnidirectional coverage (e.g.. cellular
telephones or mobile data networks), so often a compromise must be made.

Sensitive receivers used in satellite or point-to-point radio links often have the first
amplifier and/or mixer mounted at the antenna in an outdoor unit (ODU), with a connecting
transmission line at the IF or baseband frequency to an indoor unit (IDU). This avoids a long
lossy RF transmission line before the first stage of the receiver which, by the cascade noise
figure formula of (3.77), provides a significant improvement in the overall noise figure of
the system. The amplifier/mixer components used in the outdoor unit are selected to have
good noise figure, and are often referred to as the low-noise block (1LNB) of the receiver.
When an LNB is combined with an antenna in this manner, G/ T is usually modified to
include the combined noise temperature of the LNB and the antenna.

Finally, note that the dimensions given in (4.29) for 10log(G/T) are not actually
decibels per degree Kelvin, but this is the nomenclature that is commonly used for this
quantity.

The Direct Broadcast System (DBS) operates at 12.2-12.7 GHz. with a transmit
carrier power of 120 W. a transmit antenna gain of 34 dB, an IF bandwidth of
200 MHz, and a worst-case slant angle (30°) distance {rom the geosynchronous
satellite to earth of 39,000 km. The 18" receiving dish antenna has a gain of
33.5 dB and sees an average background brightness temperature of 7}, = 50 K,
with a receiver LNB having a noise figure of 1.1 dB. The DBS system is shown in
Figure 4.13, Find (a) the EIRP of the transmitter, (b) G/ 7 for the receive antenna
and LNB system, (¢) the received carrier power at the receive antenna terminals,
and (d) the carrier-to-naoise ratio (CNR) at the output of the LNB,

EXAMPLE 4.6 ANALYSIS OF DBS SYSTEM
n-:}j)))

DBS LNB
satellite R
3 : ®_ CNR
o
G, P

DBS receiver

FIGURE 4.13  System diagram of the DBS system for Example 4.6.




4.4

4.4 Basic Practical Antennas 131

Solution
First we convert quantities in dB to numerical values:

34 dB = 2512
1.1dB =1.29
33.5dB = 2239

We will take the operating frequency to be 12.45 GHz. so the wavelength is
0.0241 m.

(a) The EIRP of the transmitter is found using the definition of (4.21):
EIRP = P,G, = (120)(2512) = 3.01 x 10° W = 54.8 dBm.

(b) To find G/T we first find the noise temperature of the antenna and LNB
cascade, referenced at the input of the LNB:

T, =Ty +Ting =T +(F — DTy =50+ (1.29 — 1)(290) = 134 K.

Then G/ T for the antenna and LNB is

2
B) = 1
G/T(dB) = 10log 74

= 12.2 dB/K.

(¢) The received carrier power is found from the Friis equation:

_ PGGE (301 x 10°)(2239)(0.0241)°
T (@rR»} (4)2(3.9 x 107)2
=1.63 x 1077 W = —117.9 dBW.

(d) Then the CNR at the output of the LNB is

P,Ginp 1.63 x 10712
CNR = = =441 = 16.4 dB,
kT.BGnp (1.38 % 10=23)(134)(20 x 10%)

where Gyyg, the gain of the LNB module, cancels in the ratio for the output
CNR. A CNR of 16 dB is adequate for good video quality with the error-
corrected digital modulation used in the DBS system. O

BASIC PRACTICAL ANTENNAS

Although a thorough coverage of antenna design for wireless systems is far beyond
the scope of this book, it will be useful for the reader to gain familiarity with some of the
practical aspects of the more commonly used antennas. Thus in this section we discuss
the operation and basic characteristics of dipole and loop antennas, which are used in a
wide variety of wireless communications equipment. The interested reader can consult the
references for more detail on antenna design. Reference [6] provides an in-depth treatment
of antennas for mobile radio systems. Other types of antennas that are important in the field
of wireless communications, such as microstrip antennas, reflector antennas, and arrays,
are discussed in references [1]-[3] and [7].

Here we will focus on wire antennas, which include dipoles, loops, and their many
variations. Dipole and loop antennas date back to the early work of Hertz, were used
extensively in the pioneering wireless work of Marconi, and continue to be used in a
large number of wireless systems today. Wire dipoles and loops are relatively small at the
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(h)

FIGURE 4.14 An electrically small dipole antenna. (a) Geometry and current distribution, (b)
Equivalent circuit.

usual wireless frequencies of 900 MHz and above. and are low in cost. Dipoles and loops
generally provide omnidirectional coverage, which is desired for mobile systems such us
cellular telephones, pagers, and mobile data terminals.

Electrically Small Dipole Antenna

An electrically small dipole is probably the simplest type of radiating element that
finds practical use. As shown in Figure 4.144, the dipole consists of a thin wire of radius g
and length L, with a feeding voltage generator located at its midpoint; an equivalent circuit
for the dipole is shown in Figure 4.14b. The term “small™ means that the dipole is below
resonance in length, or L < A /2. The distribution of current along the dipole goes to zero
at the ends of the dipole, and is maximum at the center. With L < A /2, there are no other
maxima or minima in the current.

As shown in references [1]-[3], the far field of the small dipole can be derived as

E, = ~—-——~—jkw0 0% inge—ihor, Ey=0, (4.31)
dxr
where / is the dipole current at the feed point. This expression applies for 0 < 6 < 7.
Thus, a vertical dipole has a main beam in the horizontal plane at @ = 90" and is vertically
polarized. The elevation plane pattern of the dipole is shown in Figure 4.15. The sin @ far-
field pattern was already studied in Example 4.2, where we found the half-power beamwidth
to be 907, and the directivity to be 1.76 dB.
We can find the total power radiated by the dipole by integrating the average Poynting
vector over all space. Thus, using (4.6)—(4.7), we have

Pog = |EH|2 sinf do dg
2?10 b= J =0
g 1212 k 401212
— oL kM f f sin*0.df dgp = -0 “”“ i i (4.32)
327 Jp=oJo=o A

where the last step follows from using kg = 27 /2 and 5o = 377 = 1207 Q. If we consider
the equivalent circuit of the dipole as shown in Figure 4,14b, with the radiation resistance
Rrya accounting for the total radiated power, then

Ly2
Py = 5‘({1 Rrad-
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FIGURE 4.15 Elevation plane pattern of an electrically small vertical dipole antenna.

and so comparison with (4.32) gives the radiation resistance of the small dipole as

+

Red = 2on3(%) Q. (4.33)

More advanced techniques can be used to find the reactive part of the dipole input

impedance, which is
—604 L
X:—[ln(-—)— 1113'2. (4.34)
L a

where a is the dipole radius. Then the input impedance of the dipole is Zj, = Ryq + jX.
The results of (4.33) and (4.34) show that, for electrically small dipoles, the real part of
the input impedance is only a few ohms, or less, while the imaginary part is often several
hundred ohms, or more. This makes matching a small dipole to normal system impedances
of 50  difficult, and generally requires high-Q matching circuits.

So far we have assumed the dipole to be lossless. The finite conductivity of a realistic
dipole, however, introduces a small amount of loss which reduces the radiation efficiency
of the antenna. The effective loss resistance of the small dipole can be derived to be

R, L
6ra

Rioss = 2, (4.35)

where R, is the surface resistance of the dipole conductor, given by

Wiy

R, =
20

Q. (4.36)
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In (4.36), 1o = 4 x 1077 H/m, and o is the conductivity of the metal. in $/m. Once we.
have the radiation and loss resistances, the radiation efficiency of the small dipole can be
found from (4.10) as

P rad Riad

Crag = = : (4.37)
h Prw.l e PJL:SH Rrad + th:l_‘-m

A dipole antenna for a paging system operates at 930 MHz. If the dipole is 3.0 cm
long with a radius of 0.01 ¢m, find the input impedance of the dipole, and its
radiation efficiency. Assume a copper conductor.

) > EXAMPLE 4.7 IMPEDANCE AND EFFICIENCY OF A DIPOLE ANTENNA
a 1)) >>

Solution
The conductivity of copper is 5.8 x 107 S/m [4]. So from (4.36) the surface resis-
tance is

wily (277 )(930 x 100)(4m % 10-7) 4
R,r = —_— : - = 7.96 107" Q
"=V 20 \/ 2.8 % 107) e Wk

Then from (4.35) the loss resistance is

RL — (7.96 x 107)(3.0)

— = = (.1 ,
G6ra (6 )(0.01) 9138

Ryggs =

The wavelength at 930 MHz is A = 32.3 cm, so the radiation resistance found

. ] 2 U
Rmd —_— ._: (};1 . - ..r:UJT e — l.; SZ.

and the reactance. from (4.34). is

_ —60AT, (L —60(32.3)[. [ 3.0
— — =]l =— —_— ] = —967 Q.
T=Z ["‘” (a) '] 7(3.0) [“‘(0.01) 1] e

Then the radiation efficiency is

Rrad 1.70
= - = 93%.
S Rpg+ R LAOH0.13 07 O

Half-Wave Dipole Antenna

As the length of the dipole increases, its resistance increases and its reactance becomes
less capacitive. When the length is approximately A /2, the reactance becomes zero, and
the dipole is said to be resonant. The input impedance of a resonant dipole is about Z;, =
72 + jO €2, which is much easier to match to a transmitter or receiver.

The current distribution on a half-wave dipole has approximately a half-cosine shape,
with the current zero at the ends of the dipole and a maximum at the center. As derived in
references [1]—[3], the far-field pattern of the half-wave dipole is

cos (Z cos @) e~k

Ey=W

=
Il
2

4,
sinf r (439
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This pattern is similar to the sin# pattern of the small dipole, but is slightly narrower.
Its maximum occurs at @ = 907, and the half-power beamwidth is 78°. The directivity is
2.2dB.

The loss resistance of a half-wave dipole is comparable to that of the small dipole given
in (4.35), but because the radiation resistance is much greater, the efficiency of a half-wave
dipole is usually close to 100%.

Monopole Antenna

By image theory, a horizontal ground plane can be placed at the midpoint of a vertical
dipole antenna without altering the fields of the dipole. This forms a monopole antenna, the
evolution of which is shown in Figure 4.16.

Figure 4.16a shows a dipole antenna, with a feed voltage Vj and feed current fy. Also
shown is the elevation plane pattern of the dipole. If the feed generator is bisected into two
series-connected generators each having voltage V;/2, as shown in Figure 4.16b, then a
symmetry plane exists through the middle of the antenna. as indicated by the dotted line. In
fact, since the tangential electric field is zero on this midplane. an infinitely large perfectly
conducting horizontal ground plane can be inserted at this position, without changing the
fields anywhere in the problem. Once the ground plane is in place, the bottom generator and
dipole arm can be removed to leave a monopole antenna, as shown in Figure 4.16¢. In this
case, the fields are zero below the ground plane. The monopole antenna can be conveniently
fed from a coaxial cable from below the ground plane.

The radiated fields of the dipole and the equivalent monopole are identical in the
hemisphere above the ground plane, but the fields are zero below the ground plane of the
monopole. Thus, for an electrically small monopole (height < 4/4), the far field can be
expressed as

_ JkamoloL

Ey = infe " E, =0, (4.39)

dmr
for) < # < m/2. This field has the same maximum value as the field of (4.31) for the small
dipole, but the total radiated power will be half of that for the small dipole. Therefore the
directivity of the electrically small monopole will be twice the directivity of the dipole, or

Iotll+ fot * o}
~) V2 ~) V,/2
,-.._; I/{] ________ o E _______ —
- ~] Vy/2 Grlound
- plane
(a) (b) ()

FIGURE 4.16 Evolution of a monopole antenna from a dipole. (a) Dipole antenna and radiation

pattern. (b) Dipole antenna with series generators and symmetry plane. (¢) Monopole
antenna mounted on a ground plane.
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D = 1.76 + 3 dB = 4.76 dB. Similarly, the directivity of a 4 /4 monopole will be twice the
directivity of a half-wave dipole, or 5.2 dB.

The impedance of the monopole is also different from the impedance of the corre-
sponding dipole. The relation can be determined from Figure 4.16, which indicates that the
terminal current is the same for each case. but the terminal voltage of the monopole is half
the terminal voltage of the dipole. Therefore the input impedance of the monopole is half
the impedance of the dipole:

zmonopole = %Zdipuiw (440}

Thus the input impedance of a resonant 4/4 monopole is about 36 Q.

Sleeve Monopole Antenna

There are dozens of variations of dipole and monopole antennas that have been devel-
oped over the years. Some of these offer improvements in performance, while others are
of interest for specialized applications. One of the more important variations for wireless
systems is the sleeve monopole.

A problem with the basic dipole antenna is that it requires a balanced feed at the
middle of the element. This can be done with two-wire “twin-lead” line, as in the case
of broadcast television or FM radio antennas, but is not very convenient for most mobile
wireless applications. A monopole antenna can be used with an unbalanced coax feed line,
but requires a relatively large ground plane. This may be reasonable for vehicle-mounted
antennas, but is clearly impractical for handheld wireless equipment.

The sleeve monopole, shown in Figure 4.17, solves both of these problems. The sleeve
monopole consists of a coax feed line that passes through a metallic sleeve without direc|
contact. The center conductor of the coax is extended past the top of the sleeve to forma.
monopole element, The overall length of the antenna is L + £ = ) /4. The effective feed
pointis located at the top end of the outer coax conductor and generates currents on the sleeve.
as well as the monopole element. The current distribution is zero at the top of the monopole
and at the bottom of the sleeve, and is similar in form to the current on a monopole antenna,
Thus the pattern, beamwidth, and directivity of the sleeve antenna are comparable to those
of a monopole element. Because of these features. and the fact that they are inexpensive

Monopole

_— Sleeve

FIGURE 4.17 Geometry of a sleeve monopole antenna,
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FIGURE 4.18 An electrically small loop antenna. (a) Geometry. (b) Equivalent circuit,

and compact, commercially available sleeve antennas are used in a wide variety of portable
wireless systems.

Electrically Small Loop Antenna

Wire loop antennas also offer the advantages of low-cost and low-gain, and are therefore
useful in many portable wireless devices. Loop antennas have an advantage over dipole-type
radiators for applications where the receiver is held close to the body. in that the performance
of a loop element is not degraded as much due to the high conductivity of the body [6].

The dual to the small dipole studied in the previous section is the small loop, shown
in Figure 4.18a. It consists of a wire loop of radius b, carrying a uniform current /. The
radius of the wire is «. The far field of the loop can be shown to be

e—j kar
Ey =0, Ey = Vysin6 = (4.41)

Thus the far-field pattern of the loop antenna is the same as the pattern of the small dipole
antenna (plotted in Figure 4.15), implying that the main beam occurs at # = 90°, with a
half-power beamwidth of 90°, and a directivity of 1.76 dB. The polarization, however, is in
the ¢ direction, meaning that the loop antenna is horizontally polarized, in contrast to the
vertically polarized dipole.

Using the same method as used to derive (4.33), the radiation resistance of the loop is

b2\ 2
Rua = 31, '.300(312 ) Q. (4.42)

This result generally gives good results for loops with b < 4/10. The reactance of the loop is

8b
X = kun{][ln(—-) - 1.75] Q, (4.43)
a

which is seen to be inductive, in contrast to the capacitive reactance of the small dipole.
As with the small dipole, the radiation resistance of the small loop is typically only a few
ohms, or less, while the reactance is several thousand ohms, or more. The equivalent circuit
of the small loop antenna is shown in Figure 4.18b.

The loss resistance of the small loop antenna can be derived as

b
Rigss = ;‘Rs Q, (4.44)
|

where R, is the surface resistance given by (4.36). The radiation efficiency can then be
found from (4.37).
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4.5

The radiation resistance of the loop antenna can be increased by using more turns; if
N turns are used, the radiation resistance of (4.42) will increase by the factor N2, although
loss resistance will also increase. Loop antennas are sometimes made square or rectangular
in shape. In general, an arbitrarily shaped small loop antenna of perimeter length L with an
enclosed area § has radiation and loss resistances given by,

S 2
Rrag = 31 120'0(&—3) Q, (4.45)

L
Rioss = : R, Q. (4.46)
2ma

Aloop antenna is used for the paging system of Example 4.7, operating at 930 MHz.
The loop has a diameter of 3.0 ecm and is made [rom copper wire with a diameter
of 0.02 ¢m. Find the input impedance of the loop, including loss effects, and the
radiation efficiency.

) > EXAMPLE 4.8 IMPEDANCE AND EFFICIENCY OF A LOOP ANTENNA
o :)) >>

Solution
The wavelength and surface resistance are the same as in Example 4.7, The radi-
ation resistance is computed using (4.42) as

22 0.0152 2
Rmd=31,200(”b) =31.200(u) —143q.

A (0.323)2

The reactance is computed from (4.43);

8b 2 8(3)
= e 5 e 224 175 =138 |
X k(}?}(][ln( 3 ) | 75:| 0323 (377)[]]‘!(0.(}2) 1 5] 39212 Q

The loss resistance is computed from (4.44) as

b 3 B
Rips = ERE = 5.0_2(7‘96 x 107 =1.19Q.
So the inputimpedance of the loopis Ziy = Ryg + Rioss + X =2.62 + 39,212 Q.
The efficiency is

Read .43

= = 55%,
Rag+ Rige.  1434+1.19

Cral =

which is considerably lower than the efficiency of the dipole of Example 4.7. O

PROPAGATION

Between the transmit and receive antennas of a radio communication channel the
propagating wave is subject to a variety of effects that can alter its amplitude, phase, or
frequency. Such propagation effects include:

e reflection (from the ground or large objects)
e diffraction (from edges and corners of terrain or buildings)
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e scattering (from foliage or other small objects)
® attenuation (from rain or the atmosphere)
e Doppler (from moving users)

This list covers the most important effects for frequencies above 500 MHz, and so includes
most wireless systems in which we are interested. At frequencies below about 100 MHz,
however, a number of other propagation effects can be important, such as ground surface
waves, atmospheric ducting, and ionospheric reflection.

Propagation effects generally have the effect of reducing the received signal power, and
thus limit either the usable range or maximum data rate of a wireless system. We will discuss
in some detail ground reflections, and make some qualitative comments on the subjects of
path loss and attenuation. This material will be followed by the important related topic of
multipath fading in the following section. We refer the reader to the literature for a more
detailed discussion of radio wave propagation.

Free-space Propagation

In Section 4.2 we derived the Friis equation in (4.20), which shows that received power
decreases as 1/R* with distance from the transmitter. This parh loss strictly applies only to
propagation in free space, where there is no reflection, scattering, or diffraction along the
path between transmitter and receiver. In practice, the Friis formula can be used when there
is essentially a single line-of-sight (LOS) path between the transmitter and receiver. This
usually implies that at least one of the link antennas has a narrow beamwidth (high gain),
as in the case of point-to-point radio links, satellite-to-satellite links, and earth-to-satellite
links. Figure 4,19a illustrates a typical situation where the Friis formula can be used with
good accuracy.

E Line-of-sight pdﬂ‘l ; H

\ // oog
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FIGURE 4.19 (a) A point-to-point radio link with a single line-of-sight propagation path. (b) A

cellular telephone channel having multiple propagation paths.
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FIGURE 4.20 Geometry of a radio link with a direct propagation path and a ground reflection path,

In many practical cases reflections, scattering, and diffractions create more than a single
path between transmitter and receiver, as illustrated in Figure 4.19b. Multipath propagation
is particularly likely when the antennas have broad beams (low gain) and are in close
proximity to the ground or other large reflecting structures such as buildings, vehicles, or
heavy foliage. In the worst case, there may be no direct line-of-sight path between the
transmitter and receiver: this is a common situation for cellular and PCS telephone users
located in a building or vehicle. Communication is still possible in the presence of multiple
propagation paths, even in the absence of a LOS path. but the total signal voltage at the
receiver will experience varying degrees of destructive or constructive interference due to
the variable phase delays that occur along different paths, The Friis formula cannot be used
in these cases.

Ground Reflections

Determining the received signal power in a multipath environment is usually a very
difficult problem, but we can study the essential effects of reflections by considering an
LOS path with a single reflected signal. This model is useful for ground reflections, which
frequently occur in practice, as well as reflections from buildings, vehicles, and other large
structures.

The geometry of a propagation path with a single ground reflection is shown in Figure
4.20. The transmit antenna is located at height i, above a flat ground, and the receive
antenna is located at height h;. The distance between the transmitter and receiver is d,
which, in practice, is much greater than /i, or hi;. Besides the direct LOS path from the
transmit antenna to the receive antenna, a reflected path also exists, By Snell’s law, the
incident wave is specularly reflected from the ground, meaning that the angle of incidence,
A, is equal to the angle of reflection.

Let the transmit antenna gain and power be G, and F,. and the receive antenna gain
and power be G, and P, respectively. Then from (4.1) and the Friis formula of (4.20), we
can write the received voltage due to the direct wave as

A ~ ko R,
Vi=+/ P,Zne_jk”‘?d — Mtr—ikn-‘h = C(:' ke

: ; (4.47)
4JTRJ Rd

where Ry is the path length of the direct ray, and Zy is the receiver load impedance. Note
that we have retained the phase of the received voltage, as given by (4.1). because the total
voltage at the receiver will be the phasor sum of the voltages due to the direct and reflected |
signals. The constant C is used to simplity our notation and is defined as

A
C=-VG\G PZ. (4.48)

T




4.5 Propagation 141

Assuming thatd > hy and d 3> h». the direct path distance can be approximated using the
Taylor expansion that /1 4+ x = | 4 x/2:

o — iy 2
Ry=@+(hy—mP =d+ (—iT") (4.49)

Similarly, the receive voltage due to the reflected wave can be written as

e_.ﬂ:f}Rr
vo=cri—. (4.50)

r

R, is the path length of the reflected wave, which can be approximated as

(ha + hy)?
zd) """

In (4.50), I' is the plane wave voltage reflection coefficient of the ground, which is
a function of the incident angle, the frequency, the polarization of the incident wave, and
the dielectric constant and conductivity of the ground [4]. Typical values for the material
properties of the ground are £, = 15 and & = 0.005 S/m at 100 MHz [8]. For vertical
polarization, at angles of incidence close to grazing (small 0), the reflection coefficient will
be close to —1. Thus we will make the approximation that I" = —1.

We also assume that the gain patterns of the transmit and receive antennas are equal for
the direct and reflected rays. This is a good assumption, unless the antenna gains are very
high, because in practice the angle ¢ is very small.

Combining the direct and reflected voltages of (4.47) and (4.50) gives the total received
voltage as

2+ (hy+h )2 =d+ (4.51)

= jhko R — jko Ry
= g ] (4.52)

d [ [ Ra‘ Rr

For the amplitude variation of (4.52) we can assume that R, = R; = d with negligible

error because d > hy and d > h». The phase terms, however, must be treated with greater

accuracy because of the modulo 2z periodicity of the complex exponential. Thus (4.32)
reduces o

LI LT

V.= [1 — e 2hammhajdy (4.53)

- [] - g'J-ku{Rd-R,]] —-C =

The magnitude of the last factor in (4.53) is called the path gain factor, F:
P = ll = e—Ellr-knh:JuM| 1N Q‘Si‘ﬂ (;ﬂ%) ‘ (454)

Observe that 0 < F < 2, so that the received voltage may be doubled (power quadrupled)
when the two signals are in phase, or reduced to zero in the case of complete destructive
interference,

For a fixed transmitter height /1| and distance d, the path gain factor can be plotted as
a function of the receive antenna height 1. This is usually done by defining the angle i as
the elevation angle of the receive antenna as seen at the transmitter:

ha
tanyr = —. (4.55)
d
Then (4.54) can be written as

F = 2|sin(koh tanyr)|. (4.56)
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In a practical situation the frequency (k) and transmit antenna height /i are usually
fixed, and the receive antenna distance d and height i1, are variable. The path gain factor
F can then be plotted versus W as a coverage diagram, to give the relative field strength
versus position of the receive antenna.

The height of a cellular telephone transmit antenna operating at 1800 MHz is
8.33 m. If the distance to the receiver is | km, find the smallest receiver antenna
height that will maximize the receive signal voltage.

) > EXAMPLE 4.9 EFFECT OF GROUND REFLECTION
=3) ))

Solution
At 1800 MHz the wavelength is 0.1667 m, so h; = 8.33 m = 504. The path gain
factor has a maximum when the argument of the sin function is /2, 37 /2, elc:

h
k[}hlhg _ 2?1'(50)\.)hj!_ _ _JT_:{ _ E - - =0, ]‘2'”“

d 1000 10 2
So the minimum height for a maximum path gain is
w10
= o =35m. )

Path Loss for Ground Reflections

In contrast to the 1/ R? path loss of the Friis formula, the received signal power in the
presence of a ground reflection varies according to the path gain factor of (4.56), and is not
simply a function of the separation distance. In the limiting case of very large distances,
however, the path gain factor can be simplified by using the Taylor series approximation
that sinx = x:

kol o
n

2kohyha

d

—~

F=2|si

Applying this result to (4.53) gives the received voltage as

2Ckghyhy e~ F%oka e~ ikoRy
= —— = 2Ckoh h . (4.57)
d Rd i Rﬁ 71

Since the signal voltage decreases as 1/R?, the received signal power will decrease as 1/RY

V2 4ACEnih:  P.G,G,h2h:
Pr=||= '0;2:-'F:lz_ (4.58)

where (4.48) was used for the constant C. This result applies when kohhs/d < 0.3 rad,
for
kohihy 2001 hy

955 — 3

(4.5

Realistic Path Loss

We have seen that the Friis formula leads to a path loss factor for free-space propagatio
of 1/R?, for the decrease in received power with distance. When a ground reflection j;
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TABLE 4.1  Typical Path Loss Exponents for Realistic Cellular Environments

Path Loss

Environment Exponent
Free space 2
Urban 2.7-3.5
Shadowed urban 3-5
In-building LOS 1.6-1.8
In-building shadowed 4-6
Factory shadowed 2-3
Retail store 2.2
Office—soft partitions 24

present, the path loss can be as much as 1/ R* in the worst case. In practice, actual propagation
paths will be more complicated than either of these idealized cases due to the possibility of
multiple reflections, diffractions, and scatterings. The resulting path loss can be expressed
as 1/R", where the exponent may vary from n =2 to 5 or 6, in the case of many lossy
obstructions. The complexity of a realistic propagation environment usually requires that
path loss be measured. rather than calculated from first principles. Table 4.1 gives some
typical path loss exponents that have been measured; this and further data can be found in
reference [8].

Attenuation

Attenuation is the decrease in signal power due to losses in the propagation path. These
may be due to the atmosphere, precipitation, walls, or ceilings.

Figure 4.21 shows the attenuation of the atmosphere versus frequency, for two dif-
ferent altitudes. Note that atmospheric attenuation is generally negligible at frequencies
below about 10 GHz, and exhibits peaks at frequencies near 22 GHz, 60 GHz, and higher
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FIGURE 4.21 Average atmospheric attenuation versus [requency (horizontal polarization),
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4.6

TABLE 4.2  Attenuation of Some Common Building Materials

Material Frequency Loss (dB)
Concrete block wall 1300 MHz 13
Sheetrock (2 x 3/8") 9.6 GHz 2
Plywood (2 x 3/4") 9.6 GHz 4
Concrete wall 1300 MHz 8-15
Chain link fence 1300 MHz 5-12
Loss between floors 1300 MHz 20-30
Corner in corridor 1300 MHz 10-15

frequencies. As in the case of atmospheric noise temperature shown in Figure 4.10, these
peaks are due to resonances of molecular water and oxygen. Also observe that attenua.
tion decreases with altitude, due to a decreased air and water vapor density. The effective
atmospheric path length for earth-to-satellite links is about 4-5 km. '

Precipitation, in the form of rain or snow, can greatly increase atmospheric attenuation:
at microwave frequencies. For example, at 10 GHz the attenuation for a rain rate of 5 mm/h
is about 0.1 dB/km, but for a rate of 100 mm/h this increases to 3 dB/km.

Many wireless applications involve propagation into or within buildings and may de-
pend on propagation through walls or ceilings. Different building materials lead to different.
attenuation rates which can be easily measured, but practical situations are often compli-
cated by multiple reflections and multipath signals. Table 4.2 lists attenuation for some:
common materials; this and related data can be found in reference [8].

FADING

In many practical wireless systems there may be no direct line-of-sight path between
the transmitter and receiver. A typical example is a cellular telephone system. where the.
signal between the base station and a mobile user may be blocked by buildings. vehicles, or
similar obstructions. In such cases multiple paths between transmitter and receiver may exig.
due to scattering, reflection, or diffraction, and thus communication may still be possible.
Because such multipath signals arrive at the receiver with different amplitudes and phases,
the net received signal voltage can vary due to destructive interference. Because of long path:
lengths, rapid variations in received amplitude can occur over distances as short as A /2, If
a mobile user is moving, or if some of the scatterers/reflectors are moving, these variations.
may occur over relatively short time intervals. This effect is known as fading, and is one of
the most significant factors affecting the performance of wireless systems [9]-[ 10]. Besides
large amplitude variations, fading can also involve frequency modulation due to Doppler
effects, and variable signal delays caused by time-varying propagation paths. '

Fading is referred to as a small-scale effect, since it involves large variations in ampli E
tude over small distances or time intervals, This is in contrast to large-scale propagation
effects caused by 1/R" path losses, or blockage or other effects that produce slower varig
tions over relatively large distances. These effects are illustrated in Figure 4.22, which showg
received signal power versus distance from the transmitter. Fading effects are observed &
the rapid variations in amplitude versus distance, which are seen to be as severe as 20-30 d§
in some cases. The large-scule variation of the received signal power is found by averaging
the small-scale variations to give the dashed curve. In an ideal free-space environment, gt
one with a single ground reflection, the large-scale variation would monotonically decrease
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FIGURE 4.22 Typical received signal power versus distance from transmitter, showing small-scale

fading effects and large-scale variations.

with distance according to 1/R* or 1/R*. But in more realistic situations the large-scale
variation may be nonmonotonic due to varying combinations of constructive and destructive
interference.

There are several types of fading that occur in practice, depending on whether the
signal bandwidth is greater or lesser than the channel bandwidth, and whether Doppler shift
is appreciable or not. Here we consider only the case of flat fading. defined as the case
for which Doppler effects are negligible and the signal bandwidth is less than the channel
bandwidth. This means that the transfer function of the propagation channel has a constant
amplitude (“flat”) and a linear phase variation versus frequency over the bandwidth of the
signal. We will show next that the statistics of the received signal amplitude in this case
satisfy a Rayleigh probability distribution function. This is probably the most common type
of fading, but nevertheless still represents an idealized view of multipath fading.

Rayleigh Fading

To study the effect of multipath fading we assume a situation with a large number of
signal paths between the transmitter and receiver, but no direct line-of-sight path, and find
the statistics of the received voltage envelope. Each received voltage component may have
an independent amplitude and phase, so the total received voltage can be expressed as

N
V() =) Vi cos(@t +¢,), (4.60)
=1

where V, and ¢, are independent random variables describing the amplitude and phase of
the nth received signal component, and e is the RF carrier frequency that is common to
each component. If we have a large number of multipath components, the amplitude can be
considered to be gaussian distributed. This follows from the central limit theorem, which
states that the sum of a large number of independent random variables tends to a gaussian
distribution. The phases will be uniformly distributed between 0 and 2.

Since cos(wt + ¢h,) = coswi cos ¢, — sin i sin ¢,, we can rewrite (4.60) in terms of
the in-phase and quadrature components of the carrier waveform:

V(1) = x(r)coswt — y(t)sinwt, (4.61)
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with
N N _
x() =Y Vacosgy: y(t) =Y Vusing,. (4.62)
n=1 n=1

The functions x(z) and y(r) are gaussian random variables with zero mean, since V), has
zero mean, is independent of ¢,, and E{cos¢,] = E{sin¢,) = 0. So we can write the
probability distribution functions of x(r) and v(r) as

e-—xzj'!.o:
V2ra?
e")”fifrz'

V2ra?

Now express the quadrature form of V/(r) in (4.61) in polar form, as a magnitude and phase:.

filx) = (4.6%)

)= (4.63b)

V(1) = r(t) coslwt + 0(1)], (4.64)

where the magnitude r(¢) is defined as

r2(0) = XX + ¥, (465)
and the phase 6(1) satisfies
_0
tan 6(1) = ot (4.66

The magnitude r(7) is the envelope of the received signal waveform, as shown iy
Figure 4.23. To find the statistics of the envelope voltage r(1), we first find the joint pdi
of x(r) and v(r), which is simply the product of f, and f, since x(¢) and y(¢) are inde-
pendent:

—{xl ) 207

foyle, y) = filx) fyly) = (467

202

Now convert this pdf to the r, 8 coordinates using (4.65):

2
2202
r_,{__.ﬂ

e
,0) = i
_frﬂ(?’ ) il

forO0<r<oc and 0<6 <2x. (4.

FIGURE 4.23 The envelope of the received signal voltage in a multipath propagation environme




Problems 147

Finally, the pdf for r(¢) can be found by integrating over the ¢ variable. Since dx dy =
rdrd@, the differential element for the # integration is rd#:

2n =120
frlr) = f frur Ordd ="5—— for0<r < oo, (4.69)
=0 o

This is the Rayleigh probability distribution function, and it gives the statistics of the
received signal envelope in the presence of flat fading. We will use this result in Chapter 9
to determine the effect of fading on the bit error rates of digital modulation schemes.
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PROBLEMS

4.1

4.2

4.3

4.4

4.7

4.8

A base station antenna operating at 860 MHz consists of an array of three parallel half-wave dipoles
spaced 0.452 apart. Find the far-field distance of the antenna,
An antenna has a radiation pattern function given by Fj(f, ¢p) = A sin@ sin¢. Find the main beam
position, the 3 dB beamwidth. and the directivity (in dB) for this antenna.
A small loop antenna at the origin of the x-v plane has a far-field pattern given by

Eu(f. H. th) =0

L

Es(r 8, ¢) = Vysind vim.

¥
Find the main beam position, the 3 dB beamwidth, and the directivity.

A monopole antenna on a large ground plane has a far-field pattern function given by Fy(d, ¢) =
Asiné, for 0 < 6 < /2. The radiated field is zero for /2 < @ < . Find the directivity (in dB) of
this antenna.

A DBS reflector antenna operating at 12.4 GHz has a diameter of 18", If the aperture efficiency is
65%, find the directivity.

A reflector antenna used for a cellular base station backhaul radio link operates at 38 GHz, with a
gain of 32 dB. If the aperture efficiency is 60%, find the beamwidth of the antenna if the main beam
is assumed to have equal beamwidths in both planes.

Find an expression for the effective aperture area of the electrically small dipole antenna of Example
4.2, If the dipole operates at 900 MHz and is 3 cm long with a diameter of 0.5 mm, compare the
physical cross-sectional area of the dipole with its effective aperture area.

Ata distance of 300 m from an antenna operating at 5.8 GHz, the radiated power density in the main
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4.9

4.10

4.11

4.12

4.13

4.14

4.15

beam is measured to be 7.5 x 107F W/m?. If the input power to the antenna is known to be 85 W, find
the gain of the antenna.
A transmitting antenna has an input current of 0.04 A (peak) and radiates a far-zone electric field
given by

218 for D<= <127
0 for 127 < <= 180

. v/m (peak).

— ke
Eolr 0, ) = = {

Find the gain of the antenna, in dB. and the radiation resistance, if the efficiency of the antenna is
known to be 80%.

A wireless local area network operating at 2.4 GHz has an average transmit EIRP of 22 dBm, The
receiver is located 500 m away, with an antenna gain of 3 dB. If the receiver appears as a 50 Q load
to the receive antenna, find the rms receiver input voltage.

A cellular base station is to be connected to its Mobile Telephone Switching Office (MTSO) located
5 km away. Two possibilities are to be evaluated: (1) a radio link operating at 28 GHz, with G, =
G, = 25 dB: and (2) a wired link using coaxial line having an attenuation of 0.05 dB/m. with four
30 dB repeater amplifiers along the line, If the minimum required received power level for both cases
is the same, which option will require the smallest transmit power"

A 28 GHz common-carrier radio link uses a tower-mounted reflector antenna with a gain of 32 dB,
If the transmitter power is 3 W, find the minimum distance within the main beam of the antenna for
which the U.S.-recommended safe power density limitof 10 mW/cm” is not exceeded, How does this
distance change for a position within the sidelobe region of the antenna, if we assume a worst-cas
sidelobe level of 15 dB below the main beam? Are these distances in the far field of the antenny
(assuming a round reflector, and an aperture efficiency of 60%)7

Consider a 900 MHz radio transmitter driving a half-wave dipole, with an input impedance of Z; =
72 4 j40 . and a radiation efficiency of 80%. What is the value of the generator impedance required
to provide maximum power transfer between the transmitter and the antenna, and the required rmg
generator voltage if it is desired to radiate a total power of 100 mW?

T~

4 km

The atmosphere does not have a definite thickness, since it gradually thins with altitude, with 4
consequent decrease in attenuation, But if we use a simplified “orange peel” model, and assume
that the atmosphere can be approximated by a uniform layer of fixed thickness, we can estimate the
background noise temperature seen through the atmosphere. Thus, let the thickness of the atmosphere
be 4000 m and find the maximum distance ¢ to the edge of the atmosphere along the horizon, &
shown in the figure below (the radius of the earth is 6400 km). Now assume an average atmospheric
attenuation of 0.005 dB/km, with a background noise temperature beyond the atmosphere of 4 K
and find the noise temperature seen on earth by treating the cascade of the background noise with the
attenuation of the atmosphere. Do this for an ideal antenna pointing toward the zenith, and toward the
horizon.

A key premise in many popular science fiction stories and movies is the idea that radio and TV signals
from earth can travel through space and be received by listeners in another star system. Show that this
is a fallacy by calculating the maximum distance from earth where a signal could be received with
a SNR = 0dB, in the presence of a 4 K interstellar background noise temperature. To be specifie,
assume that an “I Love Lucy” rerun is being broadcast on TV channel 4 (67 MHz), with a 4 MH;




4.16

4.17

4.18

4.19

4.20

4.21

4.22

4.23

4.24
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bandwidth, a transmitter power of 1000 W, transmit and receive antenna gains of 4 dB, and a perfectly
noiseless receiver, Relate this distance to the nearest planet in our solar system. How much would this
distance decrease if an SNR of 30 dB is required at the receiver? (30 dB is a typical value for good
reception of an analog video signal.)

If a microwave signal at 2 GHz is to be transmitted to the nearest star (Alpha Centuri), what is
the required transmitter power for a received SNR of 0 dB? Assume large dish antennas with G =
60 dB for transmit and receive, a 4 K background noise temperature, and a receiver bandwidth of
1 kHz.

Consider the GPS receiver system shown below, The guaranteed minimum L1 (1575 MHz) carrier
power received by an antenna on Earth having a gain of 0 dBi is §; = —160 dBW. A GPS receiver
is usually specified as requiring a minimum carrier-to-noise ratio, relative to a | Hz bandwidth, of
C/N (Hz). If the receiver antenna actually has a gain G4, and a noise temperature T, derive an
expression for the maximum allowable amplifier noise figure F, assuming an amplifier gain G, and
a connecting line loss, L. Evaluate this expression for C/N = 32 dB-Hz, G, = 5dB, T, = 300 K,
G =10dB, and L = 25 dB.

hY

Lossy N
line

Receiver

L

L

Consider the replacement of a DBS dish antenna with a microstrip array antenna. A microstrip array
offers an aesthetically pleasing flat profile, but suffers from relatively high dissipative loss in its feed
network, which leads to a high noise temperature. If the background noise temperature is 7 = 50 K,
with an antenna gain of 33.5 dB and a receiver LNB noise figure of 1.1 dB, find the overall G/ T for
the microstrip array antenna and the LNB, if the array has a total loss of 2.5 dB. Assume the antenna
is at a physical temperature of 290 K,

A high gain antenna array operating at 2.4 GHz is pointed toward a region of the sky for which the
background temperature can be assumed to be at a uniform temperature of 5 K. A noise temperature
of 105 K is measured for the antenna temperature. If the physical temperature of the antenna is 290 K,
what is its radiation efficiency?

The AMPS cellular telephone system operates with a mobile receiver frequency of 882 MHz. If the
base station transmits with an EIRP of 100 W, and the mobile receiver has an antenna with a gain of
2 dB and a noise temperature of 200 K. find the maximum operating range if the minimum SNR at
the output of the receiver is required to be 18 dB. The channe] bandwidth is 30 kHz. and the receiver
noise figure is 6 dB. Assume the Friis formula applies to this idealized problem.

The directivity of a square microstriparray of N % N elements with A /2 spacing is given by D = w N*.
If a corporate microstrip feed network is used. the power loss increases approximately with size as
L = ¢*V* where o is the attenuation of the feed lines in neper/i. For large N. the exponential
increase in loss leads to a reduction in gain as size increases. Thus, maximum values of array gain
and G/ T exist for a given value of attenuation. Derive an expression for the gain of the array, and
find the optimum value of N resulting in maximum gain. Next, derive an expression for the G/ T of
the antenna. assuming a uniform background noise temperature 7}, and a physical temperature T for
the array. Find the optimum value of N that maximizes G/ T for T, = 50 K, and for 7;, = 290 K.
Evaluate the optimum gain and G/ T for e = 0.016 neper/A.

Derive the expression for the radiation resistance ol a small loop antenna given in (4.42), The constant
Vo= ké’]nbzfn/‘“-

An electrically small dipole operates at 900 MHz. If the dipole is made from copper wire with a length
L and radius a, compute and plot the radiation efficiency for 0.01 = L/x < 0.1, witha = 10~ and
a= 1074

Repeat Problem 4.23 for a small loop antenna, with acircumference in the range 0.01 < 2mb/A < 0.1,
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4.25

4.26

Consider the effect of a ground reflection at 900 MHz, with a transmit antenna height of 50 m,
and a range distance of 2000 m to the receive antenna. Plot the received signal voltage magnitude,
normalized to the receive voltage under free-space conditions, versus receive antenna height h;, for
0 < hy < 80 m. Assume vertical polarization, and a ground reflection coefficient of T' = —1.
For a Rayleigh probability distribution function given by fi.(r) = ;‘}e“'}fz“n, for r = 0, lind the
cumulative distribution function, Next, find the rms value of the Rayleigh pdf. Use these results to
plot the percentage of time that a signal amplitude is at least Ry (dB) below the rms value fora
Rayleigh fading channel, for 0 dB < R, < 20 dB.




Filters are two-port networks used to control the frequency response in an RF or microwave
system by allowing transmission at frequencies within the passband of the filter, and attenuation
Within the stopband of the filter. Common filter responses include low-pass, high-pass, band-
Jass, and bandstop (or bandreject). Filters are indispensable components in wireless systems,
used in receivers for rejecting signals outside the operating band. attenuating undesired mixer
products, and for setting the IF bandwidth of the receiver. In transmitters, filters are used to
control the spurious responses of upconverting mixers, to select the desired sidebands, and to
limit the bandwidth of the radiated signal.

Because of the importance of filters in radio and other applications, a large amount of
material on the theory and design of filters is available in the literature. Our purpose here is to
give a brief introduction to filter design theory using the insertion loss method, and to describe
some of the practical filter designs that are commonly used in modern wireless systems. More
tomplete treatments of filter theory and practice can be found in references [1]-[3].

Many techniques have been proposed for the design and analysis of filter circuits, but the
insertion loss method is generally preferred for the flexibility and accuracy that it provides.
The insertion loss method is based on network synthesis techniques, and can be used to design
filters having a specific type of frequency response. The technique begins with the design of
a low-pass filter prototype that is normalized in terms of impedance and cutoff frequency.
Impedance and frequency scaling and transformations are then used to convert the normalized
design to the one having the desired frequency response, cutoff frequency, and impedance level.
Additional transformations, such as Richard's transformation, impedance/admittance inverters,
and the Kuroda identities, can be used to facilitate filter implementation in terms of practical
tomponents such as transmission lines sections, stubs, and resonant elements. Analysis and
design examples of low-pass, bandpass, and high-pass filters will be presented.

151
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.5'1_ FILTER DESIGN BY THE INSERTION LOSS METHOD

The ideal filter would have zero insertion loss in the passband, infinite attenuation in
the stopband, and a linear phase response (to avoid signal distortion) in the passband. Of
course, such filters do not exist in practice, so compromises must be made: herein lies the.
art of filter design.

The insertion loss method allows a high degree of control over the passband and
stopband amplitude and phase characteristics, with a systematic way to synthesize a desired
response. The necessary design trade-offs can be evaluated to best meet the application
requirements. If, for example, a minimum insertion loss is most important. a binomial
frequency response can be used: a Chebyshev response would satisfy a requirement for the.
sharpest cutoff. If it is possible to sacrifice the attenuation rate, a better phase response can
be obtained by using a linear phase filter design. And in all cases. the insertion loss method
allows filter performance to be improved in a straightforward manner, at the expense of 4.
higher order, or more complex, filter.

Characterization by Power Loss Ratio
In the insertion loss method a filter response is defined by its insertion loss, or power
loss ratio, Pg:

Power available from source Pine I

P, = = — \
L Power delivered to load Poag 1 = |[Ti{w)|?

(5.1);

where I"() is the reflection coefficient seen looking into the filter. Observe that this quantity
is the reciprocal of |17 | if both load and source are matched, The insertion loss (IL) in dBis.

IL = 10 log Pix. (5.2

Because of the causal properties of passive networks, IT(e)|* is an even function of @ (see.
Problem 5.1). Therefore we can write |T'(@)|? as a polynomial in ?:

M(w?)

2 _
[Mew)|” = M@ + N@D)'

(53)

where M and N are real polynomials in @®. Substituting this form in (5.1) gives
M(w?)
Niw*)’

Thus, for a filter to be physically realizable its power loss ratio must be of the form of
(5.4). Notice that specifying the power loss ratio simultaneously constrains the reflection
coefficient, I'(ew). We now discuss several practical filter responses.

Pig =1+ (54)

Maximally flar. This characteristic is also called the binomial or Butterworth response, and
is optimum in the sense that it provides the flattest possible passband response for a given
filter complexity, or order. For a low-pass filter, the maximally flat response is defined by

2N

P =1 +k2(3) : 53
wl

where N is the order of the filter. and e, is the cutoff frequency. The passband extends

from @ = 0 to @ = w,; at the band edge the power loss ratio is | + k2. If we choose this

as the —3 dB point, as is common in practice, then we have k = 1. For @ > w,, the a

tenuation increases monotonically with frequency. as shown in Figure 5.1. For @ > m‘.j
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PrpA
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ripple

Maximally
fat

L+ k2

! | | "

0 0.5 1.0 1.5 W/,

FIGURE 5.1 Maximally flat and equal-ripple low-pass filter responses (N = 3).

Pir = k*(w/w,)*" , which shows that the insertion loss increases at the rate of 20N dB per
decade increase in frequency. The term maximally flar arises from the fact that it can be
shown that the first (2N — 1) derivatives of (5.5) are zero at w = (.

Equal-ripple. 1f a Chebyshev polynomial is used to specify the insertion loss of an N-order
low-pass filter as

Pig = | +k*T§ (wg)’ (5.6)

£
where Ty (x) is a Chebyshev polynomial of order N (see Appendix E), then a sharper cutoff
characteristic will result, although the passband response will have ripples of amplitude
| + k%, as shown in Figure 5.1, since Ty(x) oscillates between 1 for [x| < 1. Thus, k?
determines the passband ripple level. For large x, Ty(x) = (2x)V/2, so for w > . the
insertion loss becomes asymptotic to

P k2 20\
LR = I('ﬁu_t) 1

which also increases at the rate of 20 dB/decade. But the insertion loss for the Chebyshev
case is {22N )/4 greater than the binomial response, at any given frequency where @ > w,.

Linear Phase. The above filters specify the amplitude response, but in some applications
(such as multiplexing filters in frequency-division multiplexed communications system) it
is important to have a linear phase response in the passband to avoid signal distortion. It
turns out that a sharp-cutoff response is generally incompatible with a good phase response,
s0 the phase response of the filter must be deliberately synthesized, usually resulting in an
inferior amplitude cutoff characteristic. A linear phase characteristic can be achieved with
the following phase response:

N
$(w) = Aw [1 + p(g) ] . (5.7)

where ¢(w) is the phase of the voltage transfer function of the filter, and p is a constant. A
related quantity is the group delay, defined as

N
r=@=A|:1+P(2N+1](£) :l- (5.8)

d (2] e

which shows that the group delay for a linear phase filter is a maximally flat function.
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. Low-pass .
Scaling and ;
E‘:'IJIEI“ = prototype ‘; 4Angd = [mplementation
specifications design conversion

FIGURE 5.2 The process of filter design by the insertion loss method.

More general filter specifications can be obtained, but the above cases are the most com-
mon. We will next discuss the design of low-pass filter prototypes which are normalized in
terms of impedance and frequency; this type of normalization simplifies the design of filters
for arbitrary frequency, impedance, and type (low-pass, high-pass, bandpass. or bandstop).
The low-pass prototypes are then scaled to the desired frequency and impedance, and the
lumped-element components replaced with distributed circuit elements for implementation’
at microwave frequencies. This design process is illustrated in Figure 5.2.

Maximally Flat Low-Pass Filter Prototype

Consider the two-element low-pass filter prototype circuit shown in Figure 5.3; we will
derive the normalized element values, L and C, for a maximally flat response. We assume g
source impedance of 1 €. and a cutoff frequency of w, = 1. From (5.5). the desired power
loss ratio will be, for ¥ = 2,

]

Pir =1+ (5.9)
4
The input impedance of this filter is |
. R(l- jwRC)
Zy = joL 4+ W (5.10)
Since the input reflection coefficient is
= Zin—1
zll1 + l
the power loss ratio can be written as
Pp= — = ! _ 1Zn+ 1P
S Ty [(Zin— D/(Zin + DICZ5 — DAZ5+ 1))~ 2AZin + Z3)°
Now,
. 2R
atle= ToRe

FIGURE 5.3  Low-pass filter prototype for N = 2.




and

50 (5.10) becomes

|z1-n+112=(
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R
1 + w?R2C?

R

Pir =

4R

| +w?RC? (
I+ w?R2C?

+ 1)h + (wL

2

+1)“+(wg,_

2

wC R? )*

T 1+ w?RIC2

©wCR?> \*
1 + w?R2C?

- - -
=TpR + 2R+ 14 R*C*0* + &’ L* + w*L*C*R* — 20*LCRY

l el ) el 2 7 p
=1+ E[“ — RP +(R*C?* + L* —2LCRY)w? 4+ L’ C*R*oY] (5.11)

Notice that this expression is a polynomial in @?, as it should be, according to the above
discussion. Comparing to the desired response of (5.9) shows that R = 1, since Pig =1
for w = 0. In addition, the coefficient of w® must vanish, so

Gl =L = (C=1)* =0,

or L = C. Then for the coefficient of @" to be unity, we must have

01‘L=C=\/§.

1 1.
—LCt =LY =1,

4

4

In principle, this procedure can be extended to find the element values for filters with
an arbitrary number of elements, N, but clearly this is not practical for large N. For a
normalized low-pass design, however, the element values for the ladder-type circuits of
Figure 5.4 can be tabulated [1]. Table 5.1 gives such element values for maximally flat
low-pass filter prototypes for N = 1 to 10. (Notice that the values for N = | agree with the
above analytical solution.). This data is used with either of the ladder circuits of Figure 5.4 in
the following way. The element values are numbered from g at the generator impedance to
gn+1 at the load impedance, for a filter having N reactive elements. The elements alternate

TABLE 5.1 Element Values for Maximally Flat Low-Pass Filter Prototypes (gy = l,w, = I, N = 1to 10)
i & 8 g4 8s g6 &7 g i) g1 g
12,0000  1.0000
2 14142 1.4142  1.0000
4 1.0000  2.0000 1.0000  1.0000
4 0.7654 1.8478 1.8478 0.7654  1.0000
5 06180 1.6180 2.0000 1.6180 0.6180  1.0000
6 05176 14142 19318 19318 14142 05176  1.0000
T 04450 1.2470  1.8019  2.0000 1.8019 1.2470 0.4450  1.0000
§ 03902 L1111 1.6629 19615 1.9615 16629 11111 03902 1.0000
9 03473 1.0000  1.5321 1.8794 2.0000 1.8794 1.5321 1.0000 0.3473  1.0000
10 03129 09080 14142 1.7820 19754 19754 1.7820 14142 09080 0.3129  1.0000

Source: Reprinted from G. L. Matthaei, L. Young, and E. M. T. Jones, Microwave Filters, Impedance-Matching
Networks, and Coupling Structures (Dedham, MA: Artech House, 1980), with permission.
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Ry=pgy=1 Ly=g
Y ————
TC=8 T Ci=g G
{a)
BN

FIGURE 5.4  Ladder circuits for low-pass filter prototypes and their element definitions. (a) Proto-
type beginning with a shunt element. (b) Prototype beginning with a series element,

between series and shunt connections, and so g, has the following definition:

__ | generator resistance (network of Figures 5.4a)
Bor= generator conductance (network of Figures 5.4b)

__ |inductance for series inductors
(k= ig::, vy |capacitor for shunt capacitors
load resistance if gy is a shunt capacitor

BN+L= [load conductance if gy is a series inductor

Then the circuits of Figure 5.4 can be considered as the duals of each other. and both wil|
give the same response.

Finally, as a matter of practical design procedure, it will be necessary to determine the
size, or order, of the filter. This is usually dictated by a specification on the insertion loss at
some frequency within the stopband of the filter. Figure 5.5 shows the attenuation character-
istics for various N, versus normalized frequency. If a filter with N > 10 is required, a good
result can usually be obtained by cascading two designs of lower order. Alternatively, (5.5
can be used directly to find N, given a desired level of attenuation at a particular frequency,

A maximally flat low-pass filter is to be designed with a cutoff frequency of 8 GHz
and a minimum attenuation of 20 dB at 11 GHz. How many filter elements are
required?

) > EXAMPLE 5.1 LOW-PASS FILTER DESIGN
o l}) >>

Solution
We have @ = 27 = 11 GHz and @, /27 = 8 GHz, so we can compute the value
for the horizontal axis of Figure 5.5 as

‘3 = o
W, 8

Then from Figure 5.5 we see that an attenuation of 20 dB at this frequency requires
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FIGURE 5.5  Attenuation versus normalized frequency for maximally flat filter prototypes.

Adapted from G. L. Matthaei, L. Young, and E. M. T. Jones, Microwave Filters,
Impedance-Matching Nerworks, and Coupling Structures (Dedham, MA: Artech
House, 1980), with permission.

that N = 8, Further design details for this filter will be discussed in the following
section. O

Equal-Ripple Low-Pass Filter Prototype

For an equal-ripple low-pass filter with a cutoff frequency w, = 1, the power loss ratio
from (5.6) is

Pir = 1 + ET(w), (5.12)

where 1 + k? is the ripple level in the passband. Since the Chebyshev polynomials have the
property that

0 for N odd

TO= 11 for ¥ eve”
(5.12) shows that the filter will have a unity power loss ratio at @ = 0 for N odd, but a power
loss ratio of 1 + k% at w = 0 for N even. Thus, there are two cases to consider, depending
on N,

For the two-element filter of Figure 5.3, the power loss ratio is given in terms of the
component values in (5.11). From Appendix E. the Chebyshev polynomial of order 2 is
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5.2

given by T5(x) = 2x* — 1,80 equating (5.12) to (5.11) gives

2 > 1 2 2 2 Nt 2
| + kK @w* —d40” + 1) =1 + Rl =R+ (RPC? + L? —2LCR*w* + L*C*R%*"),

(5.13)
which can be solved for R, L, and C if the ripple level (as determined by k2) is known.
Thus, at @ = 0 we have that

, (1 —=R)?
=
4R
or
R =1+2k%4+2%k/1+ k2 (for N even). (5.14)

Equating coefficients of w” and w? yields the additional relations

1
4% = wzﬁLECERZ.

1
—4k* = E{'chz + LY —2LCRY),

which can be used to find L and C. Note that (5.14) gives a value for R that is not unity,
so there will be an impedance mismatch if the load actually has a unity (normalized)
impedance; this can be corrected with a quarter-wave transformer, or by using an additional
filter element to make N odd. For odd N, it can be shown that R = 1. (This is because there
is a unity power loss ratio at w = 0 for N odd.)

Tables exist for designing equal-ripple low-pass filters with a normalized source impe-
dance and cutoff frequency (w, = 1) [1], and can be applied to either of the ladder circuits
of Figure 5.4. This design data depends on the specified passband ripple level; Table 5.2
lists element values for normalized low-pass Chebyshev filter prototypes having 0.5 dB or
3.0 dB ripple, for N = 1 to 10. Notice that the load impedance gy # 1 foreven N. If the
stopband attenuation is specified, the curves in Figures 5.6a,b can be used to determine the
necessary value of N for these ripple values.

Linear Phase Low-Pass Filter Prototype

Filters having a maximally flat time delay, or a linear phase response, can be designedin I
the same way, but things are somewhat more complicated because the phase of the voltage
transfer function is not as simply expressed as 1s its amplitude. Design values have been
derived for such filters [1], however, again for the ladder circuits of Figure 5.4, and are
given in Table 5.3 for a normalized source impedance and cutoff frequency (@) = 1). The
resulting group delay in the passband will be 7y = 1/ = L.

FILTER SCALING AND TRANSFORMATION

In this section we describe the process of converting a normalized low-pass filter
prototype to a filter circuit having a prescribed impedance level, cutoff frequency, and
frequency response.

Impedance Scaling

In the prototype design, the source and load resistances are unity (except for the case of
equal-ripple filters with N even, which have nonunity load resistance). A source resistance




5.2 Filter Scaling and Transformation

159

BLE 5.2 Element Values for Equal Ripple Low-Pass Filter Prototypes (gg = 1,w. = 1, N = 1 to 10)
0.5 dB Ripple
81 82 83 8a &8s 0 87 8s &n
0.6986  1.0000
© 14029 07071 19841
15963  1.0967  1.5963  1.0000
L 16703 1.1926  2.3661  0.8419  1.984]
- L7058 1.2296  2.5408  1.2296  1.7058  1.0000
17254 1.2479 26064 1.3137 24758 0.8696 1.984]
C 17372 1.2583 26381 1.3444  2.6381  1.2583  1.7372  1.0000
17451 1.2647 26564 13590 2.6964 13389 2.5093 0.8796
17504 1.2690  2.6678 1.3673 27239  1.3673 2.6678 1.2690
1.7543  1.2721 2.6754 13725 27392 13806 2.7231 1.3485 25239 0.8842 1.9841
3.0 dB Ripple
81 82 £3 84 8s 86 &7 &8s g
1.9953  1.0000
3.1013  0.5339  5.8095
33487 07117 3.3487  1.0000
34389 07483 43471  0.5920 5.8095
34817 07618 4.5381 0.7618 3.4817  1.0000
35045 07685  4.6061  0.7929 44641  0.6033 58095
35182 07723 46386  0.8039  4.6386 07723 35182 1.0000
35277 0.7745  4.6575 08089 4.6990 0.8018 4.4990 0.6073
3.5340 0.7760 46692 08118 47272 08118 4.6692 0.7760
0.7771  4.6768 08136 47425 0.8164 47260 0.8051 5.8095

Source: Reprinted from G. L. Matthaei, L. Young, and E. M. T. Jones, Microwave Filters, Impedance-Matching

Nenworks, and Coupling Structures (Dedham, MA: Artech House, 1980), with permission,

of Ry can be obtained by multiplying the impedances of the prototype design by Rq. Then, if
we let primes denote impedance scaled quantities, we have the new filter component values

given by

where L, C, and R, are the component values for the original prototype.

Frequency Scaling for Low-Pass Filters

L' = RyL,
=<,
Ry
R = Ry,
R, = RoRy,

(5.15a)
(5.15b)

(5.15¢)
(5.15d)

To scale the cutoff frequency of a low-pass filter prototype from unity to . requires that
we scale the frequency dependence of the filter by the factor 1 /@, which is accomplished
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FIGURE 5.6  Attenuation versus normalized frequency for equal-ripple filter prototypes. (a) 0.5dB
ripple level. (b) 3.0 dB ripple level. Adapted from G. L. Matthaei, L. Young, and
E. M. T. Jones, Microwave Filters, Impedance-Marching Networks, and Caupx'mg
Structures (Dedham, MA: Artech House, 1980), with permission,
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LE 5.3 Element Values for Maximally Flat Time Delay Low-Pass Filter Prototypes (gy = 1.w, =
th 1to 10)

N 81 g2 83 84 8s 86 87 88 89 B g1
120000 1.0000

2 15774 04226 1.0000

3 12550 05528  0.1922  1.0000

410598 05116 03181 01104 1.0000

509303 04577 03312 02090 0.0718  1.0000

6 0.8377 04116 03158 02364 0.1480 0.0505 1.0000

7 07677 03744  0.2944 02378  0.1778  0.1104  0.0375  1.0000

§ 07125 03446 02735 02297 0.1867 0.1387 0.0855 0.0289  1.0000

9 06678 03203 02547 0.2184 0.1859 0.1506 0.1111 00682 0.0230  1.0000

100 06305 03002 0238 02066 0.1808 0.1539  0.1240 0.0911 0.0557 0.0187  1.0000

Source: Reprinted from G. L. Matthaei, L. Young, and E. M. T. Jones, Microwave Filters, Impedance-Matching
Networks, and Coupling Structures (Dedham, MA: Artech House, 1980), with permission.

by replacing @ by w/w,:

W~ —. (3.16)

Then the new power loss ratio will be

o

P plw) = P (Z)

¢

where . is the new cutoff frequency; cutoff occurs when w/w. = 1, or @ = w,. This
transformation can be viewed as a stretching, or expansion, of the original passband, as
illustrated in Figure 5.7a,b.

The new element values are determined by applying the substitution of (5.16) to the
series reactances, jwly, and shunt susceptances, jwCy, of the prototype filter, Thus,

w
JXp=j—Ly= ij;‘
W

0]
iB. = j—Cp = jwC,
J Bk Jw,. k= Jwl,

Py Pix Pir

(a) (b} (<)

FIGURE 5.7  Frequency scaling for low-pass filters and transformation to a high-pass response.

(a) Low-pass filter prototype response for e, = 1. (b) Frequency scaling for low-pass
response. (¢) Transformation to high-pass response.
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which shows that the new element values are given by

J Lk
Ly =—, 5.17a)
(=5 (5.174)
C
c; == (5.17b)
@,

When both impedance and frequency scaling are required, the results of (5.15) can be
combined with (5.17) to give

' RULk
I.r — N 5.1 i
# W, (5.154§
; Cy .
&= . 18k
(= (5.18),

Low-pass to High-pass Transformation

The frequency substitution where,

Dt (5.19)

o |
can be used to convert a low-pass response to a high-pass response, as shown in Figure 5.7¢,
This substitution maps w = 0 1o w = 4oc, and maps w = F00 to @ = 0. Cutoff occurs
when @ = .. The negative sign in (5.19) is needed to convert inductors (and capacitors)
to realizable capacitors (and inductors). Applying (5.19) to the series reactances, jwLg, and
the shunt susceptances, jwCy, of the prototype filter gives

(0,

'X = f— = —,

J AL J = k 'wC,ﬁ
. 1

B ::—..—C — -

J B J o k f"*"Li

which shows that series inductors Ly must be replaced with capacitors C}, and shunt ca-
pacitors Cy. must be replaced with inductors with L;. The new component values are given
by

|
C,=—m, 32
e wili (5.20u)
]
L, = . 20b)
= (5.200)

Impedance scaling can be included by using (5.15) to give

I

Ck = R(,wc Lk . (5.2]§j
’ 'Rﬂ !
L, = . 5.21b
¥ i (3.21h)

) > EXAMPLE 5.2 LOW-PASS FILTER DESIGN COMPARISON
- ?)) >>

Designamaximally flat low-pass filter with a cutoff frequency of 2 GHz, impedance
of 50 €, and at least 15 dB attenuation at 3 GHz. Compute and plot the amplitude
response and group delay for f = 0 to 4 GHz, and compare these results with
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those for an equal-ripple (3.0 dB ripple) and a linear phase filter having the same
order.

Solution
First find the required order of the maximally flat filter to satisfy the insertion loss
specification at 3 GHz. We have that |@ /.| — 1 = 0.5; from Figure 5.5 we see
that N = 5 will be sufficient. Then Table 5.1 gives the low-pass prototype element
values as

281 = 0.618 = C]
g =1618= 1L,
g3 = 2.000 = C3

B4 = 1.618 = Ly
g5 = 0.618 = Cs
Then (5.18) can be used to obtain the scaled element values:

C 0.618

C = = = 0.984 pF,
' Rowe  (50)2m)(2 x 10%) P
Lo Rl _ (50A618)
T e 2mex10) ’
Cs 2.000
= Roor -~ GOGEDE % 105 P
, Rl (50)(1.618)
LG = o e x10) 6.438 nH,
C 0.61
Cl=— g = (.984 pF.

Rowe  (50)(2m)(2 x 107)

The final filter circuit is shown in Figure 5.8; the ladder circuit of Figure 5.4a was
used, but that of Figure 5.4b could have been used just as well.

The component values for the equal-ripple filter and the linear phase filter, for
N = 5, can be determined from Tables 5.2 and 5.3. The amplitude and group delay
results for these three filters are shown in Figure 5.9. These results clearly show
the trade-offs involved with the three types of filters. The equal-ripple response
has the sharpest cutoff, but the worst group delay characteristics. The maximally
flat response has a flatter attenuation characteristic in the passband, but a slightly
lower cutoff rate. The linear phase filter has the worst cutoff rate, but very good
group delay characteristic.

Rg=500

R =50Q

FIGURE 5.8  Low-pass maximally flat filter circuit for Example 5.2.

163
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Linear phase
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FIGURE 5.9  Frequency response of the filter design of Example 5.2. (a) Amplitude response.
(b) Group delay response.

Bandpass and Bandstop Transformation

Low-pass prototype filter designs can also be transformed to produce the bandpass or
bandstop response illustrated in Figure 5.10. If @, and @, denote the edges of the passband,
then a bandpass response can be obtained using the following frequency substitution:

Y &(i _ @) _ 1(3 _ w_ﬂ), 5.2
Wy — )\ wy ) A o) 1]
where
& 2T H (5.03)




5.2 Filter Scaling and Transformation 165
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g

(a) (b) (c)

FIGURE 5.10 Bandpass and bandstop frequency transformations. (a) Low-pass filter prototype

response for e, = 1. (b) Transformation to bandpass response. (¢) Transformation
to bandstop response.

is the fractional bandwidth of the passband. The center frequency, ax, could be chosen as
the arithmetic mean of w; and w,, but the equations are simpler if it is chosen as their
geomeltric mean:

Wy = /s, (524)
Then the transformation of (5.22) will map the bandpass characteristics of Figure 5.10b to

the normalized low-pass response of Figure 5.10a, as follows:
When w = wy,

When w = w,

l(w w\ 1 wf—wg)_h T
A wy W - A [T a ’

R Y 5

Alwy w/) A\ wowr /
The new filter elements are determined by using (5.22) in the expression for the series
reactance and shunt susceptances. Thus,

. [ w Wy cwly cwpLy S 1
JXJ:=L(_‘__ Ly=j——1J = joL; — j—,
A\wy o Ay Aw wC,

When w = ws,

which shows that a series inductor, Ly, in the low-pass prototype is transformed to a series
LC circuit with element values given by

4 Ly
J=m—, 5.25
k Awu ¢ a)
A
o} i I (5.25b)

Ly



166 Chapter 5: Filters

Similarly,

' C wyC I
j.Bk:%(w_ wo)c G @G o 1

which shows that a shunt capacitor, Cy, in the low-pass prototype is transformed to a shunt.
LC circuit with element values given by

A
L = . (5.25¢)
wpCy :

Cy
= — (5.25d)
Ci Acg ag

The low-pass filter elements are thus converted to series resonant circuits (having a low
impedance at resonance) in the series arms, and to parallel resonant circuits (having a high
impedance at resonance) in the shunt arms. Notice that both series and parallel resonator
elements have a resonant frequency of ey.

The inverse transformation can be used to obtain a bandstop response. Thus,

) [

-1
w — A(— = —) . (5.26)
] w '

where A and wy have the same definitions as in (5.23) and (5.24). Then series inductors of
the low-pass prototype are converted to parallel LC circuits having element values given by
AL
L, =—=% (5.274)
) o

; 1

= ; 27h)
C, T (5.27b)

The shunt capacitor of the low-pass prototype is converted to series LC circuits having

TABLE 5.4  Summary of Prototype Filter Transformations

Low-pass High-pass Bandpass Bandstop

' 1 j L LA |
ey e i
L w, L oA tyy wolA
A
I‘ I‘.UnL

1
A =L C. wyCA
iy C Wy
CA
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element values given by
5 1

L = . 5.27¢]
k ngC;c ¢ )
A
Gy = ﬂ. (5.27d)
Wy

The element transformations from a low-pass prototype to a high-pass, bandpass. or
bandstop filter are summarized in Table 5.4. These results do not include impedance scaling,
which can be made using the results in (5.15).

Design a bandpass filter having a 0.5 dB equal-ripple response, with N = 3. The
center frequency is 1 GHz, the fractional bandwidth is 10%, and the impedance is
50 .

) > EXAMPLE 5.3 BANDPASS FILTER DESIGN
a:))))

Solution
From Table 5.2 the element values for the low-pass prototype circuit of Figure 5.4b
are given as

g = 1.5963 = Ll
g1 = 1.0967 = C’g
g3 = 1.5963 = L
g4 = 1000 =Ry

Then (5.15) and (5.25) give the impedance-scaled and frequency-transformed
element values for the circuit of Figure 5.11 as

L Z
L, = =22 = 127.0 nH,
WA
A
C! = =0.199 pF,
' woli Zy :
AZ
L, = —2 =0.726 nH,
T Gy
&
C, = = 3491 pF,
2 ngZn P
LAaZ
Ly = =22 = 127.0 0H,
" w@-A
A
C§ = = 0.199 pF.
P wLaZo 3
The resulting amplitude response is shown in Figure 5.12. O
500 Li Ci Ly C3

500

o3

FIGURE 5.11 Bandpass filter circuit for Example 5.3
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FIGURE 5.12  Amplitude response for the bandpass filter of Example 5.3.

5.3

LOW-PASS AND HIGH-PASS FILTERS USING TRANSMISSION
LINE STUBS

The lumped-element filters discussed in the previous sections generally work well at low
frequencies, but two problems arise at higher RF and microwave frequencies. First, lumped
elements such as inductors and capacitors are generally available only for a limited range of
values, and are difficult to implement at high frequencies. Instead, distributed components,
such open- or short-circuited transmission line stubs, can be used as reactive elements,
In addition, at microwave frequencies the electrical distance between filter components
is not negligible. Richard’s transformation can be used to convert lumped elements to-
transmission line stubs, while Kuroda's identities can be used to separate filter elements
by using transmission line sections, Because such additional transmission line sections do-
not affect the filter response. this type of design is called redundant filter synthesis. It is
possible to design microwave filters that take advantage of these sections to improve the filter
response, but such nonredundant synthesis does not have a lumped-element counterpart [4],

Richard’s Transformation
The transformation,
14
Q = tan B¢ = tan (i) (5.28)
Uy
maps the w plane to the © plane, which repeats with a period of @t /v, = 2. This trans-
formation was introduced by P. Richard [5] to synthesize an LC network using open- and.

short-circuited transmission lines. Thus, if we replace the frequency variable @ with €2, the
reactance of an inductor can be written as

JjX1 = jSQL = jLtan B¢, (5.29)
and the susceptance of a capacitor can be written as

JB. = jQC = jCtan BL. (5.29b)
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AR at w,
X, => L X, => §C.
Zo=L
(a)
o—— A8 it o,
(o o]
B, => =C B => o.c.
o ! Q
o— | Zo=—=
i >
(b)

FIGURE 5.13 Richard’s transformation. (a) For an inductor transformed to a short-circuited stub.

(b) For a capacitor transformed to an open-circuited stub,

These results indicate that an inductor can be replaced with a short-circuited stub of length
B¢ and characteristic impedance L, while a capacitor can be replaced with an open-circuited
stub of length 8¢ and characteristic impedance 1/C. A unity (normalized) filter impedance
is assumed here.

Cutoff occurs at unity frequency for a low-pass filter prototype; to obtain the same
cutoff frequency for the Richard’s-transformed filter, (5.28) shows that

Q =1 = tan B¢,

which gives a stub length of ¢ = A/8, where A is the wavelength of the line at the cutoff
frequency, w,. At the frequency wy = 2w, the lines will be A /4 long, and an attenuation pole
will occur. At frequencies away from w,, the impedance of the stubs will no longer match
the original lumped-element impedances, and the filter response will differ from the desired
prototype response. Also, the response will be periodic in frequency, repeating every 4.

In principle, then, the inductors and capacitors of a lumped-element filter design can be
replaced with short-circuited and open-circuited stubs, as illustrated in Figure 5.13. Since
the lengths of all stubs are the same (/8 at w,). these lines are called commensurate lines.

Kuroda’s Identities

The four Kuroda identities use redundant transmission line sections to achieve a more
practical microwave filter implementation by performing any of the following operations:

e Physically separate transmission line stubs
e Transform series stubs into shunt stubs, or vice versa
e Change impractical characteristic impedances into more realizable ones

The additional transmission lines are called unit elements, and are 5 /8 long at w,: the unit
elements are thus commensurate with the stubs obtained by Richard’s transform from the
prototype design.

The four Kuroda identities are illustrated in Table 5.5, where each box represents a
unit element, or transmission line, of the indicated characteristic impedance and length
(L/8 at @,). The inductors and capacitors represent short-circuit and open-circuit stubs,
respectively. We will prove the equivalence of the first case, and then show how to use these
identities in Example 5.4.
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TABLE 5.5 The Four Kuroda Identities

&4
|P-E‘w

(a)

[}
l

?1223
_o o—
(b)
2
Yt
_O o—
Zi Z3 C — —3
n* n-
e T ]
(c)
1 L
22 HEZE 2 1

e e
z, = nz,

(d)

where n® = | +Z,/Z,

The two circuits of identity (a) in Table 5.5 can be redrawn as shown in Figure 5.14ab,
where a load resistance R; is used to terminate both circuits. We will show that these two
circuits are identical by showing that the input impedances are equal for all frequencies.
For the circuit of Figure 5.14a, the transmission line impedance formula of (2.26) gives the
admittance seen looking into the transmission line section as

i Z) + jRy tan B¢ B Z1+ jR.Q
T ZW(RL+ jZitan Bl Zy(RL + jZiQ)

(5.30)

Z
ysluh’ ;% !
i /
Yill - //-—-’- Z| RL Z'm e z__-;/ﬂz F’ th R{
o o o
|
¥ Z
i
(a) ()

FIGURE 5.14  Equivalent circuits illustrating Koroda identity (a) in Table 5.5. (a) Original circuil
with load R;. (b) Transformed circuit with load R;.
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where §2 = tan B¢, as before. The input admittance of the open-circuited stub is, from (2.30),

i

Youp = Ziztan Bt = 7 (5.31)
Thus the overall admittance seen at the input to the circuit is
iQ Zy+ jR.Q Zy — 2\ + jn*R.Q
Vin = Yo + ¥’ = 2 Lol M- At By (5.32)

Zy | ZURL+ JZiR) ZoARL+JZiQ)

where n* = 1 + Z,/Z,, as defined in Table 5.5.
Carrying out the corresponding analysis of the circuit of Figure 5.14b gives a stub
impedance of
Z jZ ;
Zaw = j 3 anpe = 11 @, (5.33)
n* <

and an effective load impedance on the transmission line section of
iz

= Zaww + Ry = R + 2

Q. (5.34)

Using the transmission line impedance formula gives the overall input impedance as

. Zs .2y 2y
, ZQZI+";;‘£‘?—-Q ZERL-!'JR—EQ-I—}FQ
n="—="5 """ =7 =

2 i n2 Zy . Zy
— +jZ'Q ”—2+JRLQ—;92

Ry +jZ,Q2
(2 — Z)22) + jn’RLQ
(5.35)

Comparison with (5.32) shows that Z;, = 1/ Y. Since this equality applies for all fre-
quencies (£2), the two circuits of Figure 5.14 are identical, and can be used interchangeably.
Similar derivations can be used to establish the validity of the remaining Kuroda identities.

Design a low-pass filter for fabrication using microstrip lines, The cutoff frequency
is 4 GHz, and the impedance is 50 €. Use a third-order design, with a 3 dB equal-
ripple passband characteristic.

) ) EXAMPLE 5.4 LOW-PASS FILTER DESIGN USING STUBS
a ))) ))

Solution
From Table 5.2, the normalized low-pass prototype element values are

g =3348T =1L,
g2 =07117=C
gy = 33487 = Ly
gy = 1.0000 = Ry

with the lumped-element circuit shown in Figure 5.15a,

The next step is to use Richard’s transformations to convert series inductors to
series short-circuited stubs, and shunt capacitors to shunt open-circuited stubs, as
shown in Figure 5.15b. According to (5.29), the characteristic impedance of a series
stub (inductor) is L, and the characteristic impedance of a shunt stub (capacitor) is
1/C. Forcommensurate line synthesis, all stubs are 4 /8 long at @ = e, Itis usually
most convenient to work with normalized quantities until the last step in the design.

The series stubs shown in Figure 5.15b would be difficult to implement in
microstrip form, because series connections cannot be made to other microstrip
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lines. Thus we will use a Kuroda identity to convert these to shunt stubs. First we
must add unit elements at each end of the filter circuit, as shown in Figure 5.15c¢.
These redundant elements do not affect filter performance since they are matched
to the source and load impedances (Zy = 1). Then we can apply Kuroda identity
(b) from Table 5.5 to both ends of the filter. In both cases we have that

Z
21422 -1 = 1.299,
+z. +

3.3487
The transformed circuit is shown in Figure 5.15d, where all stubs are now in shunt
with the transmission lines,

Finally, we impedance and frequency scale the circuit, which simply involves
multiplying the normalized characteristic impedances by 50 €2, and choosing the
line and stub lengths to be A /8 at 4 GHz. The final circuit is shown in Figure 5.15¢,
with the microstrip layout in Figure 5.15f.

Ly=33487  Ly=3.3487

(5% €, =07117

Z,=3.3487

7, =3.3487

1
I
o J; a é
/ZU-1405 [=ARatw=1
(b)
7y = 3.3487 Z;=3.3487
1
Q" 3
Zy=1
I=AlBatw=1

Zy= 1405

(c)

FIGURE 5.15 Filter design procedure for Example 5.4. (a) Lumped element low-pass filter pr-
totype. (b) Using Richard’s transformations to convert inductors and capacitors
series and shunt stubs. (c) Adding unit elements at ends of filter. (d) Applyi
second Kuroda identity. (e) After impedance and frequency scaling. (F) Microstm
fabrication of final filter. '
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64.9Q 7030 64.9 Q)

(f)

FIGURE 5.15 (Continued ).

The calculated amplitude response of this design is plotted in Figure 5.16,
along with the response of the lumped-element version of the filter (scaled from Fig-
ure 5.15a). Note that the passband characteristics are very similar up to 4 GHz, but
the distributed-element filter has a much sharper cutoff response. Also notice that
the distributed-element filter has a response that repeats every 16 GHz, as a result
of the periodic nature of Richard’s transformation. O

Similar procedures can be used for bandstop filters, but the Kuroda identities are not
useful for high-pass or bandpass filters.

STEPPED-IMPEDANCE LOW-PASS FILTERS

A relatively easy way to implement low-pass filters in microstrip or stripline form is
to use alternating sections of very high and very low characteristic lines. Such filters are
usually referred to a stepped-impedance, or hi-Z, low-Z, filters, and are popular because
they are easy to design and take up less space than a similar low-pass filter using stubs.
Because of the approximations involved, however, their electrical performance is often
not as good as that of stub filters, so the use of such filters is usually limited to appli-
cations where a sharp cutoff is not required, such as for rejection of out-of-band mixer
products.
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FIGURE 5.16 Amplitude response of lumped-element and distributed-element low-pass filter of
Example 5.4.

Approximate Equivalent Circuits for Short Transmission
Line Sections

We begin by finding the approximate equivalent circuits for a short length of transmis-
sion line having either a very large or a very small characteristic impedance, The open-circuit
impedance matrix elements for a transmission line of length € and characteristic impedance
Zy can easily be found as follows:

V )
Zi=Zn = —| =—jZycotpL, (5.364),
Iy fa=0)
; Vs . .
le — Zg| = — — —ng CSC ﬁf. (5.3%}’.
Il I:=0 |

The series elements of a T-equivalent circuit for the transmission line section are then given
as Zy; — Za for the series arms, and Z;> for the shunt arm. The series arm impedances
simplify as follows:

st — 1 £
BB —.fzn[-“‘“.ﬁ—"—] = jzgun (5) 53

Now if the length of the line is small. so that g¢ < m/2, the series elements will have g
positive reactance (inductors), while the shunt element has a negative reactance (capacitor),
We thus have the equivalent circuit shown in Figure 5.17a, where

X (Bt .
i Zulan( 5 ). (5.38)
B= zlﬂ sin . (5.38b)
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FIGURE 5.17 Approximate equivalent circuits for short sections of transmission lines. (a) T-

equivalent circuit for a transmission line section having ¢ < m/2. (b) Equivalent
circuit for small 8¢ and large Z,. (c) Equivalent circuit for small g€ and small Z.

Now assume a short length of line (say 8¢ < 7 /4), and a large characteristic impedance.
Then (5.38) approximately reduces to

X = ZyBe, (5.39a)
B =, (5.39b)

which implies the equivalent circuit of Figure 5.17b (a series inductor). Alternatively, for a
short length of line and a small characteristic impedance, (5.38) approximately reduces to

X =0, (5.40a)
B = Y,p¢, (5.40b)

which implies the equivalent circuit of Figure 5.17c¢ (a shunt capacitor). Based on these
results, we see that the series inductors of a low-pass prototype filter can be replaced
with high-impedance transmission line sections (Zy = Z;), and the shunt capacitors can
be replaced with low-impedance transmission line sections (Zy = Z;). The ratio Z;/Z,
should be as high as possible, so the actual values of Z, and Z; are usually set to the highest
and lowest characteristic impedances that can be practically fabricated (the thinnest and
widest lines, respectively). The lengths of the lines can then be determined from (5.39) and
(3.40); to get the best response near cutoff, these lengths should be evaluated at @ = w,.
Combining the results of (5.39) and (5.40) with the impedance scaling equations of (5.15)
allows the electrical lengths of the inductor sections to be calculated as

LR
Bt = Z—n (inductor), (5.41a)
h

and the electrical length of the capacitor sections as

7z
Bt = ==L (capacitor), (5.41b)
Ry

where Ry is the filter impedance and L and C are the normalized element values (the g.s)
of the low-pass prototype filter.
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) > EXAMPLE 5.5 STEPPED-IMPEDANCE FILTER DESIGN
.,))))

Design a stepped-impedance low-pass filter having a maximally flat response and
a cutoff frequency of 2.5 GHz. It is necessary to have at least 20 dB attenuation
at 4.0 GHz. The filter impedance is 50 ©; the highest practical line impedances is
150 €2, and the lowest is 10 £2.

Solution
We first determine the required order of the filter based on the out-of-band atten-
uation specification. To use Figure 5.5, we calculate

w 4.0

——1=—-1=056,

W, 2.5
then the figure indicates that N = 6 should give the desired attenuation at 4.0 GHz.
Table 5.1 gives the low-pass prototype values as

g1 =03517=C
g=1414=1L,
g3 =1932 = Cj
ga=1932=1L,
gs = 1.414 = C5
gs = 0517 = L.

The low-pass prototype filter circuit is shown in Figure 5.18a.

(a)
—6 & o o > O—
z Z Z Z Z, Z Z Zy
o o o > o —
(b)

(c)

FIGURE 5.18 Filter design for Example 5.5. (a) Low-pass filter prototype circuit. (b) Stepped:
impedance implementation. (¢) Microstrip layout of final filter.
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Next. we use (5.41) to find the electrical lengths of the hi-Z. low-Z transmis-
sion line sections to replace the series inductors and shunt capacitors:

Bt = Sli—_; =5.9°
Bt =gz§—z =270
pes =33§—;=22 1°,
pL, :gz;gf = 36.9°
Bts =g5i—:’;: 16.2°
ﬂ5’6='86§3 =9.9°

The final filter circuit is shown in Figure 5.18b, where Z;, = 10 Qand Z;, = 150 Q.
Note that B¢ < /4 in all cases. A layout of the filter in microstrip is shown in
Figure 5.18c.

Figure 5.19 shows the calculated amplitude response, compared with the re-
sponse of the corresponding lumped-element filter (scaled from Figure 5.18a). The
passband characteristics are very similar, but the lumped-element circuit gives
more attenuation at higher frequencies. This is because the stepped-impedance
filter elements depart significantly from the lumped-element values at the higher
frequencies. The stepped-impedance filter may have other passbands at higher fre-

quencies,

but the response will not be perfectly periodic because the sections are

not commensurate in length. O

FIGURE 5.19
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Amplitude response of the stepped-impedance low-pass filter of Example 5.5, com-

pared with the corresponding lumped-element design.
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5.5

BANDPASS FILTERS USING TRANSMISSION LINE RESONATORS

Bandpass filters perform a variety of critical functions in wireless systems, being used
1o reject out-of-band and image signals in the front end of a receiver, to attenuate undesired
mixer products in transmitters and receivers, and to set the IF bandwidth of the receivet
system. Because of their importance, a large number of different types of bandpass filters
have been developed (see [1]-[3]), but we can only treat some of the basic principles of op-
eration and designs here. We begin with a discussion of impedance and admittance inverters,
which form the basis of design for many different types of bandpass filters. Then we present
analysis and design details for two types of bandpass filters using quarter-wave resonators,
These types of filters are among the most commonly used in practical wireless systems,

Impedance and Admittance Inverters

As seen in Section 5.2, bandpass filter prototypes require shunt elements consisting
of parallel LC resonators and series elements consisting of series LC resonators. Such an
arrangement is very difficult to implement using transmission line sections. for which it
is preferable to have either all shunt, or all series, elements. While the Kuroda identities
are useful for transforming capacitors or inductors to either series or shunt transmission
line stubs, they are not useful for transforming LC resonators. For this purpose, impedance
(K) and admittance (J) inverters can be used. Such techniques are especially useful for
bandpass and bandstop filters having narrow (<10%) bandwidths.

The conceptual operation of impedance and admittance inverters is illustrated in
Figure 5.20a. An impedance inverter converts a load impedance to its inverse, while an

Impedance inverters Admittance inveriers
o— e—
K J
+ G 2 +9()° ¥,
o— o—
Z,= K2, ¥, = JYY,
(a)
-+ Al4 - Ald
o < o 0
Zy=K Yo=T
= 0 [eZ —0
(b)

<« -
o—“—]——”—o o {} o
-|— C %-C J‘-_——C
? K= lwC ° . J=wC 0
()

FIGURE 5.20 Impedance and admittance inverters. (a) Operation of impedance and admittance

inverters. (b) Implementation as quarter-wave transformers. (¢) Implementation using
T and 7 capacitor circuits. '
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admittance inverter converts a load admittance to its inverse:

K2
W 5.42:
Z Z (5.42a)
Vo= (5.420)
R o

where K is the impedance inverter constant, and ./ is the admittance inverter constant.
The utility of impedance and admittance inverters is that they can be used to transform
between series-connected and shunt-connected elements. Thus, a series LC resonator can
be transformed to a parallel LC resonator, or vice versa. The procedure for doing this will
be illustrated for particular filter types in the following sections,

In its simplest form, a K or J inverter can be constructed using a quarter-wave trans-
former of the appropriate characteristic impedance, as shown in Figure 5.20b. It is clear
from the relation for the input impedance of a quarter-wave, Z;, = Z;-/Z,r_._ that the results
of (5.42) follow by setting Z; to the inverter constant K or J. Several other types of circuits
can be derived for use as impedance and admittance inverters [ I |-[3]. One of these is shown
in Figure 5.20c, consisting of either a T network (K inverter), or a  network (J inverter),
of capacitors. Note that the capacitor value is related to the inverter constant as shown in
the figure, and that some of the capacitors have negative values. The procedure for using
this type of inverter is shown next.

Bandpass Filters Using Quarter-Wave Coupled
Quarter-Wave Resonators

Since quarter-wave short-circuited transmission line stubs look like parallel resonant
circuits [2], they can be used as the shunt parallel LC resonators for bandpass filters. Quarter-
wavelength connecting lines between the stubs will act as admittance inverters, effectively
converting alternate shunt stubs to series resonators. Such an arrangement is shown in
Figure 5.21; both the stubs and the connecting lines are 4 /4 long at the center frequency of
the passband, wy. The characteristic impedance of the connecting lines is Zy, the impedance
of the filter.

For a narrow passband bandwidth (small A), the response of such a filter using N stubs
is essentially the same as that of a lumped element bandpass filter of order N. The circuit
topology of this filter is convenient in that only shunt stubs are used, but a disadvantage
in practice is that the required characteristic impedances of the stub lines are often unre-
alistically low. A similar design employing open-circuited stubs can be used for bandstop
filters [1]-[2].

- & - - f

S AT A A
N

FIGURE 5.21 A bandpass filter using shunt short-circuited quarter-wave resonators with quarter-

wave connecling sections,
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FIGURE 5.22 Equivalent circuit for the bandpass filter of Figure 5.21. (a) Equivalent circuit for
a short-circuited stub for ¢ near /2. (b) Equivalent filter circuit after replacmg
stubs with parallel LC resonators and quarter-wave connecting lines with aclnmlam
inverters. (¢) Equivalent lumped-element bandpass filter,

Consider an N-order bandpass filter of the form shown in Figure 5.21. We will deriwe
design equations for the stub characteristic impedances, Zy,, in terms of the element values
of a low-pass prototype having the desired response. This can be accomplished by using
equivalent circuits for the resonant stubs and connecting lines, and equating the response
to that of a lumped element bandpass filter. Note that a given LC resonator has two degrees
of freedom: L and C, or equivalently, @y and the slope of the admittance at resonance,
For a stub resonator the corresponding degrees of freedom are the resonant length and
characteristic impedance of the transmission line.

As shown in Figure 5.22a, the equivalent circuit of a short-circuited transmission line
stub can be approximated as a parallel LC resonator when its length is near 90°. The inpu
admittance of a short-circuited transmission line of characteristic impedance Zy, is

— cot@, (5.43)

Y=—']-
Zon

where§ = /2 forw = wy. lf weletw = wy + Aw, where Aw < ay, thenf = (1 + Q—ﬂ:};
which allows the admittance of (5.43) to be approximated as '

(544

Y = —cot +—]= an ——
Zoy 2ay 2Z, (J)()

—J ( :rAw) J TAw  jrnlAw
VA 25‘)(} -

for frequencies in the vicinity of the center frequency, wy. The admittance near resonance
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of the parallel LC network of Figure 5.22a can be approximated as

I c; 1
Y = jwC, + = j —(w Coln = —)
2]

jf{)Ln Ln '\J'CnLn
Cy
e m(ﬂ_%);z;cﬂm, (5.45)
Lar wy w

where C, L, = 1/ w%. Equating (5.44) and (5.45) gives the characteristic impedance of the
transmission line stub in terms of the resonator parameters as
weog L, o
4 4o Cy

Next, we consider the quarter-wave sections of line between the stubs as ideal admit-
tance inverters, with J = 1/Zy. Then the bandpass filter of Figure 5.21 can be represented
by the equivalent circuit shown in Figure 5.22b, which further can be shown to be equivalent
to the lumped-element circuit of Figure 5.22¢ by basic circuit analysis. Thus, with reference
to the terminated (with Zp) circuit of Figure 5.22b, the admittance, ¥, seen looking toward
the L,C5 resonator is

(5.46)

n =

Y = jwCs +

joly 7%

=
(G an 1|, /C(w @ 1
= j L—z(w—n—;)+z—g|:j 1—](;6—&))-!-"2-;] (5.47)
where use has been made of the fact that L,C| = L,Cs> = I/wg. The admittance at the

corresponding point in the equivalent circuit of Figure 5.22¢ (also terminated in Zp) is
found as

1 1 B
Y = joCl, 4+ ——| joLi + — + Z
=1
G e o L o e
= —3(——2)+ j —}(——ﬂ)+zn (5.48)
Ly\wy o Ci \ay W
These two results are exactly equivalent for all frequencies if the following conditions are
satisfied:
Cy C;
— = [—=, 5.49:
N L, v/ L, (5.49a)
and

(&) 4
z == [=L 5.49b
“\/ Ly \JC‘{ ( )

Using the fact that L|C| = L5C} = 1/w} allows these two equations to be solved for L,
and L

2
Zy

L= ZL! 1
@yl

Ly=L} (5.50b)

(5.50a)
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Then using (5.46) and the impedance-scaled bandpass filter elements from Table 5.4 gives
the required characteristic impedances for the first two stubs as

nwgly  wZ} 7 Zo A

=T w4 (551g
wawgl,  meplh wZogA

Zin = = = . 5.51b

02 4 2 ter ( )

By extension, it can be shown that the general result for the characteristic impedance of the
nth stub in a filter of order N is given by

n Z[}A
dg,

L = (5'52)
These results apply only to filters having input and output impedances of Z, and so cannot
be used for equal-ripple designs with N even.

EXAMPLE 5.6 BANDPASS FILTER DESIGN USING QUARTER-WAVE
'-0)))) COUPLED RESONATORS

Design a third-order bandpass filter with a 0.5 dB equal-ripple response using
quarter-wave coupled quarter-wave short-circuited stub resonators. The center fre-
quency is 2.5 GHz, and the bandwidth is 15%. The impedance is 50 §2. What is
the resulting attenuation at 2.0 GHz?

Solution
We first calculate the attenuation at 2.0 GHz. Using (5.22) to convert 2.0 GHz to
normalized low-pass form gives

L fw ay I 720 2SS
=l == | =ae— —= —==300.
N (wn ® ) 0.15 (2.5 2.0) &0

Then, to use Figure 5.6a. the value on the horizontal axis is

)

[£28

— 1 =[=3.00] — 1 = 2.00.

from which we find the attenuation as 30 dB.
From Table 5.2 we find the required g,'s for 0.5 dB ripple and N = 3. Then
(5.52) gives the necessary characteristic impedances:

n 8 Z{.hr (Q)
| 1.5963 3.69
2 1.0967 5.37
3 1.5963 3.69

All stubs and connecting lines are A/4 long at 2.5 GHz. The calculated re-
sponse of the filter is shown in Figure 5.23. Note that 30 dB attenuation is achieved
at 2 GHz. as expected. Also note that the characteristic impedances for the stubs
are very low, making practical implementation of this type of filter very difficult.
This difficulty is avoided with the capacitively coupled resonator filter discussed
in the following section. O
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FIGURE 5.23 Amplitude response of the quarter-wave coupled quarter-wave resonator bandpass

filter of Example 5.6.

Bandpass Filters Using Capacitively Coupled
Quarter-Wave Resonators

A related type of bandpass filter is shown in Figure 5.24, where short-circuited shunt
resonators are capacitively coupled with series capacitors. An Nth order filter will use N
stubs, which are slightly shorter than A /4 at the filter center frequency. The short-circuited
stub resonators can be made from sections of coaxial line using ceramic materials having
very high dielectric constant and low loss, resulting in a very compact design even at
UHF frequencies [6]. Such filters are often referred to as ceramic resonator filters, and are
presently the most common type of RF bandpass filter used in portable wireless systems,
Virtually every modern cellular/PCS telephone, wireless LAN, and GPS receiver employs
between two and four of these filters.

Operation and design of this filter can be understood by beginning with the general
bandpass filter circuit of Figure 5.25a, where shunt LC resonators alternate with admittance
inverters. As in the case of the previous bandpass filter, the function of the admittance
inverters is to convert alternate shunt resonators to series resonators; the extra inverters at
the ends serve to scale the impedance level of the filter to a realistic level. Using an analysis
similar to that used for the previous bandpass filter, the admittance inverter constants can

Col Cy Cy Cynal

FIGURE 5.24 A bandpass filter using capacitively coupled shunt short-circuited quarter-wave

resonators.
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FIGURE 5.25 Equivalent circuit for the bandpass filter of Figure 5.24. (a) A general bandpass
filter circuit using shunt resonators with admittance inverters. (b) Replacement of
admittance inverters with the circuit implementation of Figure 5.20c. (c) After con
bining shunt capacitor elements. (d) Change in resonant stub length caused bya

shunt capacitor.
TA
ZoJo = [ T (5.532)
4g

TA
—— (5.53h
4»\;' Hn&n+1 :i

[ mwA
ZD-’N,N{-I = W (5530\]
+

Similarly, the coupling capacitor values can be found as

be derived as [1]

Z{.!Jrr‘n+l =

Joi .
Gy — (5.5
woy/ 1 — (Zodn '
“'rfl L 3
Cippr = —21L (5.54b)
wy
In N+t

Cy Nyl = =,
T oo T —(Zodnnei P

Note that the end capacitors are treated differently than the internal elements.
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Now replace the admittance inverters of Figure 5.25a with the equivalent m-network
of Figure 5.20c, to produce the equivalent lumped-element circuit shown in Figure 5.25b.
Note that the shunt capacitors of the admittance inverter circuits are negative, but these
elements combine in parallel with the larger capacitor of the LC resonator to yield a posi-
tive capacitance value. The resulting circuit is shown in Figure 5.25¢, where the effective
resonator capacitor values are given by

C:; = Crr + AC” = Crr E Cn—l.rl == Cn.n+lv (555)

where AC, = —C,_ — Cy,»11 represents the change in the resonator capacitance caused
by the parallel addition of the inverter elements.

Finally, the shunt LC resonators of Figure 5.25¢ are replaced with short-circuited
transmission stubs, as shown in Figure 5.24. Note that the resonant frequency of the stub
resonators is no longer ey, since the resonator capacitor values have been modified by
the AC,'s. This implies that the length of the resonator is less than A /4 long at wy, the
filter center frequency. The transformation of the stub length to account for the change
in capacitance is illustrated in Figure 5.25d. A short-circuited length of line with a shunt
capacitor at its input has an input admittance of

Y=Y+ jaC, (5.56a)

where ¥, = %;,L cot g€, If the capacitor is replaced with a short length, A£, of transmission
line, the input admittance would be

|
Y + jz— tan BAL
0

¥= 2 =Y+ j—. (5.56b)
O — 4 jY, tan AL
Zy

The last approximation follows for A < 1, which is true in practice for filters of this type.
Comparing (5.56b) with (5.56a) gives the change in stub length in terms of the capacitor
value:

At = = 5.57
Py (5.57)

B

Note that if C < (), then A¢ < 0, indicating a shortening of the stub length. Thus the overall
stub length is given by

- Zg)wUC - (Z{)C&J[JC))L

A Z A
g=_+(JﬂLﬂﬂL (5.58)
4 25t

where AC, is defined in (5.55). The characteristic impedance of the stub resonators
is Z{}.

Dielectric material properties play a critical role in the performance of dielectric res-
onator filters. Materials with high dielectric constants are required in order to provide
miniaturization at the frequencies typically used for wireless applications. Losses must
be low to provide resonators with high Q. leading to low passband insertion loss and
maximum attenuation in the stopbands. And the dielectric constant must be stable with
changes in temperature to avoid drifting of the filter passband over normal operating con-
ditions. Most materials that are commonly used in dielectric resonator filters are ceramics
such as Barium tetratitanate, Zinc/Strontium titanate, and various titanium oxide com-
pounds. For example, a Zinc/Strontium titanate ceramic material has a dielectric constant
of 36, with a O of 10,000 at 4 GHz, and a dielectric constant temperature coefficient of
—7 ppm/C°,
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FIGURE 5.26 Amplitude response of the capacitively coupled quarter-wave resonator bandpass
filter of Example 5.7,

EXAMPLE 5.7 BANDPASS FILTER DESIGN USING CAPACITIVELY
n))))) COUPLED RESONATORS

Design a third-order bandpass filter with a 0.5 dB equal-ripple response using
capacitively coupled quarter-wave short-circuited stub resonators. The center fre-
quency is 2.5 GHz, and the bandwidth is 10%. The impedance is 50 §2. What is
the resulting attenuation at 3.0 GHz?

Solution

We first calculate the attenuation at 3.0 GHz. Using (5.22) to convert 3.0 GHz to
normalized low-pass form gives

1 {w W 1 30 25
— —_— i — TR i | ]| ——— -':3. 6 .
A (a)g w) 0.1 (2.5 3.0) Lk

Then, to use Figure 5.6a, the value on the horizontal axis is

w

W

—1=|=-3.667| — 1 =2.667,

from which we find the attenuation as 35 dB.
Next we calculate the admittance inverter constants and coupling capacitor
values using (5.53) and (5.54):

n Bn ZOJII—]JI Cn--l,.-J (PF)

1 1.5963 ZoJy = 0.2218 Cy = 0.2896
2 1.0967 ZoJi, = 0.0594 Cp =0.0756
3 1.5963 ZyJry = 0.0594 C» = 0.0756
4 1.0000 ZyJyy = 0.2218 Csy = 0.2896
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Then (5.55). (5.57), and (5.58) are used to find the required resonator lengths:

n AC, (pF) Al (A) {

I —0.3652 —0.04565 73.6°
2 —0.1512 —0.0189 83.2°
3 —0.3652 —0.04565 73.67

Note that the resonator lengths are slightly less than 90°(A /4). The calculated
amplitude response of this design is shown in Figure 5.26. The stopband rolloff at
high frequencies is less than at lower frequencies, and the attenuation at 3 GHz is
seen to be about 30 dB. while our calculated value for a canonical lumped-element
bandpass filter was 35 dB. O
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PROBLEMS

5.10

5.11

Use the causality properties of V(w), I{w), and Z{w) to show that [T'(w)|” is an even function of w.
Solve the design equations of Section 5.1 for the elements of an N = | equal-ripple filter if the ripple
specification is 1 dB.

Design a low-pass maximally flat filter having a passband of 0 to 3 GHz, and an attenuation of 20 dB
at 5 GHz. The characteristic impedance is 75 £.

Design a five-section high-pass filter with a 3 dB equal-ripple response, a cutoff frequency of | GHz,
and an impedance of 50 £2. What is the resulting attenuation at 0.6 GHz?

Design a four-section bandpass filter having a maximally flat group delay response. The bandwidth
should be 5%. with a center frequency of 2 GHz. The impedance is 50 £2.

Design a three-section bandstop filter with a 0.5 dB equal-ripple response. a bandwidth of 10%
centered at 3 GHz, and an impedance of 75 €. What is the resulting attenuation at 3.1 GHz?

Design a low-pass fourth-order maximally flat filter using only series stubs. The cutoff frequency is
2.5 GHz, and the impedance is 50 £.

Verify the second Kuroda identity of Table 5.5 by finding the ABCD matrices for both circuits.
Design a low-pass fourth-order maximally flat filter using only shunt stubs, The cutoff frequency is
2.5 GHz, and the impedance is 50 €.

Design a band-stop fourth-order maximally flat filter using only shunt stubs. The cutoff frequency is
2.5 GHz, the bandwidth is 50%, and the impedance is 50 £2.

Derive the open-circuit impedance matrix elements given in (5.36) for a two-port network consisting
of a transmission line of length ¢ and characteristic impedance Zy.
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5.12 Design a stepped-impedance low-pass filter having a cutoff frequency of 4.0 GHz and a fifth-order,
0.5 dB equal ripple response. Assume Ry = 100 . Z, = 15 Q, and Z;, = 200 Q.

5.13 Demonstrate that the circuits of Figure 5.20c act as ideal impedance and admittance inverters when
terminated with a load, Z; or ¥;.

5.14 A bandpass filter is to be used in a PCS receiver operating in the 824-849 MHz band, and must provide:

a 0.5 dB equal-ripple bandpass filter meeting these specifications using quarter-wave line coupled
quarter-wave resonators. Assume an impedance of 50 Q.

5.15 Repeat Problem 5.14 using capacitively coupled quarter-wave resonators.




Amplification is a critical function in wireless receivers and transmitters. Virtually all mi-
rowave and RF amplifiers today use three-terminal solid-state devices such as gallium arsenide
field effect transistors (FETs), silicon (Si) or silicon germanium (SiGe) bipolar transistors, het-
‘erojunction bipolar transistors (HBTSs), and high electron mobility transistors (HEMTs) [ 1]-[5].
Microwave transistor amplifiers are rugged, low-cost, reliable, and can be easily integrated in
both hybrid and monolithic integrated circuits with mixers, oscillators, switches, and related
components. They can presently be used at frequencies up to 100 GHz in a wide variety of
Japplications requiring low noise figure, broad bandwidth, and medium power capacity. While
‘microwave tube amplifiers are still sometimes required for very high power and/or very high
frequency applications, continuing improvement in the performance of microwave transistors
is steadily reducing the need for microwave tubes.

We begin this chapter with a brief overview of microwave FET and bipolar transistors, their
small-signal equivalent circuits, and some biasing considerations. Since our emphasis will be
on circuit design using transistors, as opposed to the physics of the device itself, we will treat
transistors primarily in terms of their terminal characteristics, using either S parameters or an
equivalent circuit model. Next we develop some general results for the gain and stability of a
wo-port network in terms of its S parameters, and apply this theory to the design of single-stage
transistor amplifiers in Section 6.4, Section 6.5 discusses noise considerations and the design of
low-noise transistor amplifiers. We conclude with a brief treatment of power amplifier design.
‘An understanding of the topics of S parameters and stub tuning, as discussed in Chapter 2,
qare required for this chapter; references [1]-[3] are suggested for further background on this
material.

189
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6.1

FET AND BIPOLAR TRANSISTOR MODELS

Microwave and RF transistors are used as amplifiers, oscillators, switches, phase shifters,
mixers, and active filters. Most of these applications use either silicon bipolar transistors or
GaAs field effect transistors. Silicon bipolar device technology is very mature and inexpen-
sive compared to GaAs transistor technology. Bipolar transistors are capable of higher gain
and power capacity at lower frequencies, but GaAs FETs generally have better noise figures
and can operate at much higher frequencies, Present silicon bipolar transistors are limited
to applications below about 10 GHz, but recent developments such as silicon-germanium
devices and heterojunction bipolar transistors allow operation at much higher frequencies,
GaAs FETs can be used at frequencies in excess of 100 GHz. Table 6.1 compares the gain
and noise figure versus frequency for some typical microwave transistors [2]:

In this section we give a brief discussion of the basic construction of GaAs FETs
and silicon bipolar transistors, along with small-signal equivalent circuit models for these
devices, and DC biasing considerations. The design of amplifiers and oscillators relies
primarily on the terminal characteristics of the transistor, and these can be expressed either
in terms of the two-port S parameters of the device, or in terms of the component values of an
equivalent circuit. We will use the S parameter method for most of our design work, as this
18 a procedure that is both accurate and convenient, although it does have the drawback of
requiring knowledge of the transistor S parameters (usually through measurement) over the
frequency band of interest. This is usually not a serious problem unless a very wide frequency
range is being considered, since the S parameters of microwave transistors typically change
fairly slowly with frequency. In contrast, the use of a good transistor equivalent circuit model
involves only a few circuit parameters which are generally stable over a wide frequency
range. An equivalent circuit model can also provide a closer linkage between the operation
of the device and its physical parameters.

Field Effect Transistors

Field effect transistors can be used at frequencies well into the millimeter wave range
with high gain and low noise figure, making them the device of choice for hybrid and
monolithic integrated circuits at frequencies above 5-10 GHz (3], Figure 6.1 shows the
construction of a typical GaAs FET. The desirable gain and noise features of the GaAs FET
are a result of the higher electron mobility of GaAs compared to silicon, and the absence
of shot noise. In operation, electrons are drawn from the source to the drain by the positive
Ve supply voltage. An input signal voltage on the gate then modulates the flow of these
majority carriers, producing voltage amplification. The maximum frequency of operation

TABLE 6.1 Comparison of Gain and Noise Figure of Microwave Transistors (gain and noise figure in dB)
Frequency GaAs FET GaAs HEMT Silicon Bipolar GaAs HB'T_

GHz Gain Fin Gain Fuii Gain Eaiia Gain Fuis

4 20 0.5 — - 15 25 — —

8 16 0.7 — — 9 4.5 — —

12 12 1.0 22 0.5 6 8.0 20 4.0

18 8 1.2 16 0.9 — — 16 —

36 — - 12 1.7 — —_ 10 —

60 — - 8 2.6 — — 7 it
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FIGURE 6.1  (a) Cross section of a GaAs FET. (b) Top view, showing drain, gate, and source

contacts.

is limited by the gate length; presently manufactured FETs have gate lengths on the order
of 0.3 to 0.6 m. with corresponding upper frequency limits of 100-50 GHz.

A small-signal equivalent circuit for a microwave GaAs FET is shown in Figure 6.2,
for a common-source configuration. Typical component values for this circuit model
are:

R; (series gate resistance) =7 Q

Ry, (drain-to-source resistance) = 400 Q
C,s (gate-to-source capacitance) = 0.3 pF

C 4, (drain-to-source capacitance) = (.12 pF
C 4 (gate-to-drain capacitance) = 0.01 pF
g (transconductance) = 40 mS

This model does not include package parasitics, which typically introduce small series
resistances and inductances at the three terminals due to ohmic contacts and bonding leads.
The dependent current generator g, V. depends on the voltage across the gate-to-source
capacitor Cyy, leading to a value of |S3;| > 1 under normal operating conditions (where
port 1 is at the gate, and port 2 is at the drain). The reverse signal path, given by S, is due
solely to the capacitance Cgy. As can be seen from the above data, this is typically a very
small capacitor which can often be ignored in practice. In this case, Sy = 0, and the device
is said to be unilateral.

The equivalent circuit model of Figure 6.2 can be used to determine the upper frequency
of operation for the transistor. The short-circuit current gain, G, is defined as the ratio of
drain to gate current when the output is short-circuited. For the unilateral case, where Cyy
is assumed to be zero, this can be derived as
Ly

Iy

= ﬂ (6.1)

G =
y @Cys

I

. ‘gm Vc
g

The upper frequency limit, f7. is the frequency where the short-circuit current gain is unity:

Gate 1 Caa Drain
e it s]
R; GD Ry ==Cyy
V. o C L l""’r.'
& - _—I— B -
Source

FIGURE 6.2  Small-signal equivalent circuit for a GaAs FET in a common-source configuration.
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FIGURE 6.3  (a) DC characteristics of a GaAs FET. (b) Biasing and decoupling ciruit for a GaAs
FET.

thus we have that

fr= 25’2}&. 6.2)

For proper operation, the transistor must be DC biased at an appropriate operating point.
This depends on the application (low-noise, high-gain, or high-power), the class of the
amplifier (class A, class AB, class B), and the type of transistor (bipolar, FET, HBT, HEMT),
Figure 6.3a shows a typical family of DC I versus Vi, curves for a GaAs FET. For low-
noise design, the drain current is generally chosen to be about 15% of [ (the saturated
drain-to-source current). High power circuits generally use higher values of drain current,
DC bias voltage must be applied to the gate and drain, without disturbing the RF signal
paths, This can be done as shown in Figure 6.3b, which shows the biasing and decoupling
circuitry for a dual polarity supply. The RF chokes provide a very low DC resistance for
biasing, and a very high impedance at RF frequencies to prevent the microwave signal from
being shorted by the bias supply. Similarly, the input and output decoupling capacitors block
DC from the input and output lines, while allowing passage of microwave signals. There
are many other types of bias circuits that provide compensation for temperature and device
variations, and that can work with single-polarity power supplies.

Bipolar Transistors

Bipolar transistors are usually of the npn type, and are often preferred over GaAs
FETSs at frequencies below 2 to 4 GHz because of higher gain and lower cost. Bipolar
transistors are subject to shot noise as well as thermal noise effects, so their noise figure is
not as good as that of FETSs. Figure 6.4 shows the construction of a typical silicon bipolar
transistor. In contrast to the FET, the bipolar transistor is current driven, with the base
current modulating the collector current. The upper frequency limit of the bipolar transistor
is controlled primarily by the base length, which is on the order of 0.1 pzm.

A small-signal equivalent circuit model for a microwave bipolar transistor is shown in
Figure 6.5, for a common emitter configuration. Typical values for the components of the
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FIGURE 6.4 (a) Cross section of a microwave silicon biolar transistor. (b) Top view, showing base

and emitter contacts,

equivalent circuit are:

R, (base resistance) = 7 £

R, (equivalent 7 resistance) = 110 &
C, (equivalent 7 capacitance) = |8 pF
C. (collector capacitance) = 18 pF

& (transconductance) = 900 mS

Observe that the transconductance is much higher than that of the GaAs FET, leading to
higher power gain at lower frequencies. The larger capacitances in the bipolar transistor
model serve to reduce the gain at higher frequencies. The model in Figure 6.5 is popular
because of its similarity to the FET equivalent circuit, but more sophisticated equivalent
circuits may be advantageous for use over wide frequency ranges [2]. In addition, this
model does not include parasitic resistances and inductances due to the base and emitter
leads.

The equivalent circuit of Figure 6.5 can be used to estimate the upper frequency limit,
fr, where the short-circuit current gain is unity. The result is similar to that found above
for the FET:

. gnl
fr= mC, (6.3)

Figure 6.6a shows typical DC operating characteristics for a bipolar transistor. As
with the FET, the biasing point for a bipolar transistor depends on the application and
type of transistor, with low collector currents generally giving the best noise figure, and
higher collector currents giving the best power gain. Figure 6.6b shows a typical bias
and decoupling circuit for a bipolar transistor that requires only a single polarity

supply.

Base Kb C, Collector
—AWW T I o
R
R V - G Ig"[ I"rl'.
L - r
o o
Emitter

FIGURE 6.5 Simplified hybrid-7 equivalent circuit for a microwave bipolar transistor in a

common-emitter configuration,
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FIGURE 6.6 (a) DC characteristics of a silicon bipolar transistor. (b) Biasing and decoupling
cireuit for a bipolar transistor.

& TWO-PORT POWER GAINS

In this section we develop expressions for several different types of gain for a general
two-port circuit in terms of the S parameters of the network. These results will be used in
later sections for the design of transistor amplifiers.

Definitions of Two-Port Power Gains

Consider an arbitrary two-port network with scattering matrix [ 5], connected to source
and load impedances Zg and Z; , respectively, as shown in Figure 6.7. We will define and
derive expressions for three types of power gain in terms of the S parameters of the two-port

[5]
Z
(Zy) fUU]_. v ‘-‘ _F

r\' I.1|n1 I‘:ml ‘ F.L

-
PN 2
> +0

FIGURE 6.7 A two-port network with general source and load impedances,
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network and the reflection coefficients, I'y and I'; , of the source and load.

o Power gain = G = P/ Py, is the ratio of power dissipated in the load Z;, to the
power delivered to the input of the two-port network. This gain is independent of
Zy, although some active circuits are strongly dependent on Zg.

o Available gain= G y = Pyn/ Pas isthe ratio of the power available from the two-port
network to the power available from the source. This assumes conjugate matching
of both the source and the load, and depends on Z; but not Z .

o Transducer power gain = Gy = Pp/ P.y is the ratio of the power delivered to the
load to the power available from the source. This depends on both Zs and Z, .

These definitions differ primarily in the way the source and load are matched to the two-port
device; if the input and output are both conjugately matched to the two port, then the gain
is maximized and G = G4 = Gy.

With reference to Figure 6.7, the reflection coefficient seen looking toward the load is

5 M, (6.4a)
Zp+Zy
while the reflection coefficient seen looking toward the source is
Zy — & .
s (6.4b)
Zy+ Zy

where Zj is the characteristic impedance reference for the S parameters of the two-port
network.

In general, the input impedance of the terminated two-port network will be mismatched
with a reflection coefficient given by I'y;, which can be determined using a signal flow-
graph [1], or by the following analysis. From the definition of S parameters (see Section 2.3)
and the fact that V, = 'y V7, we have

VI_ =S|1V1++S;2V2+=S“V|++SHT‘LV{, (6.5a)
Vi = SuVit + SuVs = SuV + Sl V5. (6.5b)
Eliminating V, from (6.5a) and solving for V,”/V," gives

vy SSule — Zin — Zo

Fp=—=8i+ = , 6.6a
" W I—Sul,  Zn+Zo (6:09)

- 7
where Z;, is the impedance seen looking into port 1 of the terminated network. Similarly,

the reflection coefficient seen looking into port 2 of the network when port 1 is terminated
by Zg is

vy S12821 Ty
Tow=—F=28 — . 6.6b
ol V2+ 22 + | — S]lr_s‘ ( )
By voltage division,
v, = \.A-— =V + V= V(L + Tip).
“Zs+ Zi ) '

Solving (6.6a) for Zi, gives

Zin=2 :
in (1I 0 Fin
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and using this result in the previous equation and solving for V" in terms of Vy gives

Vg (1 =Tg)
st
VI B 2 “ ISFin)- (67]

If peak values are assumed for all voltages, the average power delivered to the network is

Vs> |1 —Tg?
8Zy |1 —Tsinl?

1 )
Pn= 2—ZDIV1+|2(1 —Mi®) = (1 =T, (6.8)

where (6.7) was used. The power delivered to the load is

_ v P

P
W=7

(1= T (6.9)

Solving for V,~ from (6.5b), substituting into (6.9), and using (6.7) gives
_ WP ISP =T ) _ [V [Sa P — [T = Tsf?

P = = s 6.10
Y722y (1-SuliP ~ 8Z |1 — SulLP[l— 5Tl o
The power gain can then be expressed as
P Sn 21 — |2
_ P ISalfd =) (6.11)

B T R | S W

The power available from the source, Py, is the maximum power that can be delivered to
the network. This occurs when the input impedance of the terminated network is conjugately
matched to the source impedance [1]. Thus, from (6.8),

P _Pl _|Vs|2 |]“l-1.\"|2 6.12
avs — 4ian rmzr‘:. = SZU (] . |1-‘I‘-|2)' ( . -)

Similarly, the power available from the network, P, is the maximum power that can be
delivered to the load. Thus, from (6.10),

_ Vs 18221 = [Fou )1 — Tg|?

Pon = Piln ww = 6.13
= Pty = 525 11— SmloaPIl — TTul? |, s
In (6.13), I'j, must be evaluated for I'y = I',. From (6.6a), it can be shown that
1= 8 sP(1 — |Toul®)
It —TsTul|5, e = —
R 11— SpTgul
which allows (6.13) to be reduced to
Vs|? Sy Pl — g
Py = |Vs| [S21 %] 5

. . (6.14
82 11— SuTsI( = [FouP) ) ‘

Observe that Py, and P,,, have been expressed in terms of the source voltage, Vi, which is
independent of the input or load impedances. There would be confusion if these quantities ‘
were expressed in terms of V", since V| is different for each of the calculations of Py,
Povgsand Py

Using (6.14) and (6.12), the available power gain is then

Gi= Poo _ 1Suf(1—|Ts?)

(6.15)

Pws |1 = SiTs2(1 — |Coul?)’
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From (6.10) and (6.12), the transducer power gain is

Py _ 1SuP(=ITsP = ITef)
Pis |1 = TsTinl?[1 — S22

= (6.16)

Special Cases

A special case of the transducer power gain occurs when both the input and output are
matched for zero reflection (in contrast to conjugate matching). Then I'y = I's = 0, and
(6.16) reduces to

Gr = |Su% (6.17)

Another special case is the unilateral transducer power gain, Gy, where Sy2 = 0 (oris
negligibly small). This nonreciprocal characteristic is common to many practical amplifier
circuits. From (6.6a), 'y, = ;1 when 512 = 0, so (6.16) gives the unilateral transducer gain
as
1521 1%(1 — [Tg1®)(1 = T |*)

Gy =
U= T =8 T2l — Sl

(6.18)

> > EXAMPLE 6.1 COMPARISON OF POWER GAIN DEFINITIONS
. 3)) >>

A microwave transistor has the following S parameters at 10 GHz. with a 50 €
reference impedance:

S1 = 0.452150°
S = 0.01/-10°
Sy = 2052107

Sy = 0.40/—1507

The source impedance is Zg = 20 Q and the load impedance is Z; =30 Q.
Compute the power gain, the available gain, and the transducer power gain.

Solution
From (6.4a,b) the reflection coefficients at the source and load are

Zg—Zy 20-350
St E - D
Z.—Zy 30-—50
T Zi+2Z 30+50
From (6.6a,b) the reflection coefficients seen looking at the input and output of the
terminated network are

I

= —(.250.

ry

Si2Su T
Bin=4& —_—
n 1+ I — STs
(0.01/—=10"%2.05210°)(—0.250) )
= 0.45/150" - = 0.455/150°,
0-452150" + =5 20/ 150°)(—0.250) g

S1283Ts
rml =5 T A
I 2+ 1 — S“]_,S

01/=10° j YW —0), ]

— 0.40/—150° 4+ (0.01/£—=10")(2.05/107)(—0.429) — 0.408/—151°.

1 —(0.452150°)(—0.429)
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Then from (6.1) the power gain is
_ _ 1SaPa—ireP)
(1 = [Tin[?)|1 — STy |2
(2.05)%[1 — (0.250)3]

_ =5.94.
|1 —(0.40/—150°)(—0.250)]2[1 — (0.455)%] 9
From (6.15) the available power gain is
182121 — |T's )
Ga= 7 7
“ - SHFS|'(1 - |raul]“)
2.05)%[1 — (0.429)?

_ (2.05)°[1 — (0.429)"] 5385

[1 —(0.45£150°)(—0.429)|2[1 — (0.408)?]
From (6.16) the transducer power gain is

Sa P =T — 0P

Gr = =
T T = TTl?]l — ST 2
B (2.05°[1 — (0.429)%][1 — (0.250)) — 54y
T 1= (0.40/—150°)(—0.250)]2]1 — (—0.429)(0.455/150°)]2 ~
O

Further Discussion of Two-Port Power Gains

A single-stage microwave transistor amplifier can be modeled by the circuit of
Figure 6.8, where a matching network is used on both sides of the transistor to trans-
form the input and output impedance Z to the source and load impedances Zg and Z;,
The most useful gain definition for amplifier design is the transducer power gain of (6.16),
which accounts for both source and load mismatch. Thus, from (6.16), we can define sepa-
rate effective gain factors for the input (source) matching network, the transistor itself, and
the output (load) matching network as follows:

| —|Isf?
Gyg= ———m—, Al
* = T—TulsP G
Go = |821/?, (6.191)
1—T.?
G T (6.19¢)

L I =Sul.E

Then the overall transducer gain is Gr = GGG . The effective gains from G and G,
are due to the impedance matching of the transistor to the impedances Zg and Z; .

If the transistor is unilateral, so that Sy, = 0 or is small enough to be ignored, then (6.6
reduces 1o I'yy = Sy, T = S22, and the unilateral transducer gain reduces to Gy =

Input z Output
matching Tmr[l;as[cr matching =
circuit 4—‘ ’_» G j r circuit zﬂ
G, 0 Gy

r.\' | | l—vin ro ut

Zy

FIGURE 6.8 The general transistor amplifier circuit.
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FIGURE 6.9  Unilateral FET equivalent circuit, and source and load terminations for the calculation

6.3

of unilateral transducer power gain.

GsGyG ., where

I — gl
Gy=——"—=: (6.20a)
ST = 8T
Go = |Sul*. (6.20b)
B l— T
LT T=Sul P (6:20¢)

These results have been derived using the S parameters of the transistor, but it is possible
to obtain alternative expressions for gain in terms of the equivalent circuit parameters of
the transistor. As an example, consider the evaluation of the unilateral transducer gain
for a conjugately matched GaAs FET using the equivalent circuit of Figure 6.2 (with
Ceq = 0). To conjugately match the transistor, we choose source and load impedances
as shown in Figure 6.9. Setting the series source inductive reactance X = 1/(wCy) will
make Zi, = Z7%, and setting the shunt load inductive susceptance B = —wC 4 will make
Zow = Z7 ; this effectively eliminates the reactive elements from the FET equivalent circuit.
Then by voltage division V. = Vy/(2jwR;Cy,). and the gain can be easily evaluated as

i . % 13’” Vf' Ile-" _ gi Rd.\" _ Ra’«' (ﬁ)z
Pus  LV,P/R: — 40?RCL AR\ f /)
where the last step has been written in terms of the cutoff frequency. fr. from (6.2). This

shows the interesting result that the gain of a conjugately matched FET amplifier drops off
as 1/f%, or 6 dB per octave.

Gy =

(6.21)

STABILITY

We now discuss the stability of a transistor amplifier circuit. In the circuit of Figure 6.8,
oscillation is possible if either the input or output port impedance has a negative real part;
this would then imply that || > 1 or |Fgu| > 1. Because Iy and I'y, depend on the
source and load matching networks, the stability of the amplifier depends on I'y and I', as
presented by the matching networks. Thus, we define two types of stability:

o Unconditional stability: The network is unconditionally stable if [I"| < | and
[Tou| < 1 for all passive source and load impedances (i.e., [I's| < | and |y | < 1).

e Conditional stability: The network is conditionally stable if [Tjy| < land [Foy| < 1
only for a certain range of passive source and load impedances. This case is also
referred to as potentially unstable.

Note that the stability condition of a network is frequency dependent, since the input and
output matching networks are generally frequency dependent. Thus it is possible for an
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amplifier to be stable at its design frequency, but unstable at other frequencies. Careful
amplifier design should consider this possibility. In addition, while the following discussion
is rigorously valid for the circuit of Figure 6.8, there are two situations where these results
may not apply: if the network is nonlinear (then S parameters do not apply), or if there iy
feedback in the circuit.

Stability Circles

Applying the above requirements for unconditional stability to (6.6) gives the following
conditions that must be satisfied by I'y and I if the amplifier is to be unconditionally stable:

S8 e
Tl = |8 -0 1, 6.2
[Tl ‘ “+I.—Szzl';_ < (6.222)
S1289 s
= |8y 4 —m—— 1. 6.
IPoul = S22 + 25| < (6.22b)

If the device is unilateral (S;> = 0), these conditions reduce to the simple results that
|S11] < 1 and | S| < 1 are sufficient for unconditional stability. Otherwise, the inequalities
of (6.22) define a range of values for Iy and I'; where the amplifier will be stable. Finding
thisrange for I'y and 'y, can be facilitated by using a Smith chart, since the solutions to (6.22)
form input and output stability circles. Stability circles are defined as the loci in the I'y (or
["s) plane for which I, | = 1 (or |oy| = 1). The stability circles thus define the boundaries
between stable and potentially unstable regions of values of I'g and ', . 'y and ", must lie
on the Smith chart, since |I'g| < | and |I";| < 1 for passive matching networks and loads.

We can derive the equation for the output stability circle as follows. First use (6.224)
to express the condition that [I",| = 1 as

Si28n I

—| =1 6.
1 =820, G

or
[S11(L = S2TL) + SiaSulp| = |1 — Snl'Ll.
Now define A as the determinant of the scattering matrix:
A = 8182 — S128. (6.24)

Then we can write the above result as

|S1 — ALl = |1 — ST, |. (6.25)
Now square both sides of (6.25) and simplity to obtain

ISl + 1APITLP = (ATLS} + ATES1) = 1+ S YTL* = (S,T] + Snly)
(182> = |AP)LLT] — (82 — ASTIT — (S5, — A*S)T] = Sy > — 1

(S22 — ASIITL + (85 — A*SiT)  |SuP—1
[S221% — |A[2 T Snl— AR

Ry (6.26)

Next, complete the square by adding |Sx — AS}, 12/(|Szg|2 — |A[*)? to both sides:

b Sn—ASHTE_ ISnP—1 | 1Sn—AShP
ISP —1AR | T ISP - AR T (82l - AP
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or
_ (Sn— ASH)”
S22 — AP

= S1282
|S22]> — A2

; : ©627)

In the complex I" plane an equation of the form |I" — C| = R represents a circle with
center at C (a complex number), and a radius R (a real number). Thus (6.27) defines the
output (load) stability circle with a center C; and radius Ry, where

(S — AS)”
TSl — AR
S1283
8222 — | A2

Cr (center), (6.28a)

R, = (radius). (6.28b)

Similar results can be derived for the input (source) stability circle by interchanging Si
and ng:

(S — AS3,)*
= oot (center), (6.29a)
ST VNE
.5'13521 §
Ry =|—5—"—= (radius). (6.29h)
N RN

Given the S parameters of the transistor, we can plot the input and output stability
circles to define where || = 1 and |Tey| = 1. Then on one side of the input stability
circle we will have |Tou| < 1. while on the other side we will have oy | > 1. Similarly,
we will have |Tjy| < 1 on one side of the output stability circle, and |I'y| > 1 on the other
side. So we need to determine which areas on the Smith chart represent the stable region,
for which |Ti,) < 1 and |Toy| < 1.

Consider the output stability circles plotted in the Iy plane for|Sy;| < land |Sy| = 1.
as shown in Figure 6.10. If we set Z; = Zy, then [y = 0 and (6.22a) shows that |y, | =
|S11]. Now if [S11] < 1,then |Tjy| < 1, so the point where I';, = 0 must be in a stable region.
This means that the center of the Smith chart (where I';, = 0) is in the stable region, so all
of the Smith chart (for which |I";| < 1) that is outside the stability circle defines the stable
range for I";. This region is shaded in Figure 6.10a. Alternatively, if we set Z, = Z but

Il <1
(stable)

H—inl <1
(stable)

(a) (b)

FIGURE 6.10 Output stability circles for a conditionally stable device. (a) |Si1] < 1.(b) [Si] > 1.
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have |Sy;| > 1. then |I"y,| = 1 for I'y = 0, and the center of the Smith chart must be in an
unstable region. In this case the stable region is the inside region of the stability circle that
intersects the Smith chart, as illustrated in Figure 6.10b. Similar results apply to the input
stability circle.

If the device is unconditionally stable, the stability circles must be completely outside
(or totally enclose) the Smith chart, We can state this result mathematically as

CLl = Rel > 1, for |Sy| < 1, (6.304)
lICs| — Rs| > 1, for |Sxn| < 1. (6.30h)

If [S1y| = 1 or |8y > 1, the amplifier cannot be unconditionally stable because we can
always have a source or load impedance of Z; leading to T's = 0 or I'y, = 0, thus causing
[Tin| > 1 or [Foy| > 1. If the device is only conditionally stable, operating points for Iy
and I'; must be chosen in stable regions, and it is good practice to check the stability i
several frequencies near the design frequency. If it is possible to accept a design with less
than maximum gain, a transistor can usually be made to be unconditionally stable by using
resistive loading [3]. 4

Tests for Unconditional Stability

The stability circles discussed above can be used to determine regions for 'y and I'y
where the amplifier circuit will be conditionally stable, but simpler tests can be used (o
determine unconditional stability. One of these is the K-A rest, where it can be shown that
a device will be unconditionally stable if Rollet's condition, defined as

P 511 % = [S2)* + |A?
2|812821]

> 1. (6.31)

along with the auxiliary condition that
[A] = 1811822 — S12821] < 1, (6.32)

are simultaneously satisfied. These two conditions are necessary and sufficient for uncondi-
tional stability, and are easily evaluated. If the device S parameters do not satisfy the K-A
test, the device is not unconditionally stable, and stability circles must be used to determine
if there are values of Iy and I'y for which the device will be conditionally stable. Also,
recall from the previous paragraph that we must have [S;;| < 1 and |S»| < 1 if the device
is 1o be unconditionally stable.

While the K'-A test of (6.31)—(6.32) is a mathematically rigorous condition for uncon-
ditional stability, it cannot be used to compare the relative stability of two or more devices
since it involves constraints on two separate parameters, Recently, however, a new criterion
has been proposed [6] that combines the S parameters in a test involving only a single
parameter, (¢, defined as

L —|8ul?
= = ]
[S22 — ASY | + |S12521]

H (6.33)

Thus, if 4 > 1, the device is unconditionally stable. In addition, larger values of j imply
greater stability,
We can derive the p-test of (6.33) by starting with the expression from (6.6b) for Tt

S128uls S — AT
1—-8uIs  1—-8,Ts’

I“uul = 522 + (6.34TJ
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where A is the determinant of the S matrix defined in (6.24). Unconditional stability implies
that |Tow| < 1 for any passive source termination, I'g. The reflection coefficient for a passive
source impedance must lie within the unit circle on a Smith chart, and the outer boundary
of this circle can be written as 'y = /%, The expression given in (6.34) maps this circle
into another circle in the I'y,; plane. We can show this by substituting I'y = ¢/? into (6.34)
and solving for ¢/¢:

el — S22 — Tou )

A =8 Ton

Taking the magnitude of both sides gives

SZ‘Z = 1"‘aut -
A= S1low
Squaring both sides and expanding gives

Foul2(1 — 18112 + Tou(A*S11 — S3) + (AT — S22) = |AIF — S22,

Next. divide by 1 — |§;,]* to obtain
(A*S11 — S3)Tow + (AS]; — S2)Thy AP — 180/

Poul® + —— o =
e L= ISuP L= ISP
N A o |AMS =557 oy
ow complete the square by adding =S © both sides:
ASh — S 2— |Snl | |A*S) — Sl S8
Fot 8 ) [Al ISzil [A* Sy ?2‘1| _ IS -1]1 2. (6.35)
L=]Sul* =81l A —=18ul®»* Q=[S

This equation is of the form |y, — C| = R. which represents a circle with center C and
radius R in the 'y plane. Thus the center and radius of the mapped |T';| = 1 circle are
given by

S — ASY,
=, (6.36a)
1 — |8,
[S12521]
R = R0 (6.36b)
1—[8ul*

If points within this circular region are to satisfy [y < 1, then we must have that
ICl+ R < 1. (6.37)
Substituting (6.36) into (6.37) gives
S22 — ASH |+ 18128211 < 1= |Sul,
which after rearranging yields the pe-test of (6.33):

1 — 82
[S22 — ASY |+ |S12521]

The K -A test of (6.31)~(6.32) can be derived from a similar starting point, as in reference [ 1],
or more simply from the pi-test of (6.33). Rearranging (6.33) and squaring gives

S22 — AS [P < (1 = S0 f* = |Si282 D%, (6.38)
It can be verified by direct expansion that

1S3 — ASH P = [S1282 [ + (1 = [Su (I Szl = |AP).
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50 (6.38) expands to
[S12821 17 + (1 = 181 )18 > = A1) < (1 = 181121 =[S0 2 = 21812821 D+ | S12 S
Simplifying gives
S2* — [A? < 1 —|811]* —2|S1280],
which yields the Rollet condition of (6.31) after rearranging:

1 — |81 [* = |82]* + |A? —K>1
2|812821] '

In addition to (6.31), the K-A test also requires an auxiliary condition to guarantes
unconditional stability. Although we derived Rollet’s condition from the necessary and
sufficient result of the p-test, the squaring step used in (6.38) introduces an ambiguity in
the sign of the right-hand side, thus requiring an additional condition. This can be derived
by requiring that the right-hand side of (6.38) be positive before squaring. Thus,

[S12821] < 1 —[8y4]%

Because similar conditions can be derived for the input side of the circuit, we can interchange
Sy and Sy, to obtain the analogous condition that

1812821] < 1 — |82/,
Adding these two inequalities gives
218128u] < 2= |Sul — S0
From the triangle inequality we know that
|A] = 811822 — S12821] = [S11 82| + |S125211,

so we have that
1 2 | 2 1 2 2
[A] < |811]]S2]+1— 5|S11| = Elszzl <1- §€|S1:| — |8221%) < 1,

which is identical to (6.32).

) > EXAMPLE 6.2 TRANSISTOR STABILITY
u))))

The S parameters for the HP HFET-102 GaAs FET at 2 GHz with a bias voltage
V,s = 0 are given as follows, with Z; = 50 :

S1 = 0.894/—60.6°
Si2 = 0.020/62.4°

Sa1 = 3.122/123.6°
S1 = 0.781/-27.6°

Determine the stability of this transistor by using the K-A test and the pe-test, and
plot the stability circles on a Smith chart.
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Solution
From (6.31) and (6.32) we compute K and |A| as

iA| = |S11S22 —: S]ZSQ” = 106965—330| = 069&

1—[Sul? = [Snl? + AP
K = = 0.607.
2[8128 ]

Thus we have |A| = 0.696 < 1,but K < 1, sothe unconditional stability criteria of
(6.31)—(6.32) is not satisfied, and the device is potentially unstable. The stability
of this device could also be evaluated using the p-test, for which (6.33) gives
ju = 0.86, again indicating potential instability.

The centers and radii of the stability circles are given by (6.28) and (6.29):

Cp = %}TA%); = 1.361£47°,

R.= %l = 0.50.

Cs = H = 1.132£68°,
s = ﬁé}%gz =0.199.

This data is used to plot the input and output stability circles shown in Figure 6.11.,
Since [S);| < 1 and |S22| < 1, the central part of the Smith chart represents the
stable operating region for I'g and I';. The unstable regions are shaded in the
figure. @

AMPLIFIER DESIGN USING S PARAMETERS

We can now apply the above results to design a single-stage transistor amplifier. The
first step in amplifier design is to consider the stability of the device, using either the K — |A|
or ji-test to check for unconditional stability, and plotting the stability circles if the device
is potentially unstable. Then the input and output matching sections are designed to give a
particular value of gain or noise figure. Since G of (6.19b) is fixed for a given transistor,
the overall gain of the amplifier will be controlled by the gains, G and G, of the matching
sections. Maximum gain will be realized when these sections provide a conjugate match
between the amplifier source or load impedance and the transistor. Because most transistors
appear as a significant impedance mismatch (large | S| and [S22|) the resulting frequency
response will be narrowband. In the next section we will discuss how to design for less
than maximum gain, with a corresponding improvement in bandwidth. A discussion of
broadband amplifier design can be found in [1].

Design for Maximum Gain

With reference to Figure 6.8, maximum power transfer from the input matching section
to the transistor will occur when the input impedance to the transistor is conjugate matched
to the impedance presented by the matching section:

Cin=TF, (6.39a)
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FIGURE 6.11 Stability circles for Example 6.2.

and the maximum power transfer from the transistor to the output matching network w
occur when

roug — FE. (6.39h

Then, assuming lossless matching sections, these conditions will maximize the overll
transducer gain. From (6.16), this maximum gain will be given by

|85 * L1
= Sl 2

In the general case with a bilateral transistor (IS;ZI # 0), Ty, is affected by oy, and vic
versa, so that the input and output sections must be matched simultaneously. Using (6.39
in (6.16) gives the necessary equations:

0

Gr =
R T T

SpSu T .

Tt=29 i e 6.414
5 11+ = SZEFL ( 4]_
S I

o R 128 Dy (6.41

11— S”]—‘S'
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We can solve for I"y by first rewriting these equations as follows:

T T -8y
$i» — ATs

I..E= 22 .S,
1 —=8uls

where A = §1152 — 51285, as before. Substituting this expression for I'; into the
expression for I'y and expanding gives
Ps(1 = [82l*) + T5(ASE, — Sip)
= [g(AS], 8% — |Su* — AS183) + S7i(L— [Saa®) + S5, 2

Using the result that A(S}, 55, — S1,5%,) = |A|” allows this to be rewritten as a quadratic
equation for I'g:

(S11 — ASIITE+ (AP = [S11> + [S21* = Is + (S}, — A*S2) = 0. (6.42)
The solution is then
B £+ ‘JBZ —4|C, |2
Fy= 21(: . (6.432)
1

Similarly, the solution for I'; can be written as

By £+ /B3 —4|Cy|?
Fr= : .

20 (6.43b)
The variables By, Cy, B2, C5 are defined as
By = 1+|8)1* — |8n* — |A?, (6.442)
By =1+ 80> — [Sn|* — A, (6.44b)
C] = S|| -— QS;E. (644{.;)
Cy = Sp — AS},. (6.44d)

Solutions to (6.43) are only possible if the quantity within the square root is positive,
and it can be shown that this is equivalent to requiring K > 1. Thus unconditionally stable
devices can always be conjugately matched for maximum gain, and potentially unstable
devices can be conjugately matched if K = 1 and |A| < 1. The results are much simpler
for the unilateral case. When S;2 = 0, (6.41) shows that I's = S}, and I';, = §73,, and then
the maximum transducer gain of (6.40) reduces to

1
1 — |81

1
1 — |8

Gl = 51827 (6.45)

Maximum Stable Gain

The maximum transducer power gain given by (6.40) occurs when the source and
load are conjugately matched to the transistor, as given by the conditions of (6.39). If the
transistor is unconditionally stable, so that K = |, the maximum transducer power gain
of (6.40) can be simply rewritten as follows:
| 521

il —
(K —vK2=1). (6.46)
[S12] \/

Gl =
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This result can be obtained by substituting (6.43) and (6.44) for 'y and I'; into (6.40)
and simplifying. The maximum transducer power gain is also sometimes referred to as the
matched gain.

The maximum gain does not provide a meaningful result if the device is only condition-
ally stable, since simultaneous conjugate matching of the source and load are not possible
if K < 1 (see Problem 6.8). In this case a useful figure of merit is the maximon stable gain,

defined as the maximum transducer power gain of (6.46) with K = 1. Thus,
[Sar] .
msg = T 6.47)
S Y (648

The maximum stable gain is easy to compute and offers a convenient way to compare fhg
gain of various devices under stable operating conditions.

) > EXAMPLE 6.3 CONJUGATELY MATCHED AMPLIFIER DESIGN
9:))))

Design an amplifier for maximum gain at 4.0 GHz using single-stub matching
sections. Calculate and plot the input return loss and the gain from 3 to 5 GHz.
Use a GaAs FET with the following S parameters (Z, = 50 Q):

J (GHz) Su S21 Sz 82
3.0 0.80/—89° 2.86/99° 0.03256° 0.76:-41°
4,0 0.724—116° 2.60.76° 0.03257° 0.73.-54°
5.0 0.66/—142° 2.39/54° 0.03:62° 0.72/—68°

Solution

We first check for unconditional stability of the transistor by calculating A and K

at 4.0 GHz:

A =818 — 81285, = 0.488/—1627,

L — |81 l* = S + |A]
¥ ISl I'azl + 14| — 1.195.
2|8128|
Since |A] < | and K > 1, the transistor is unconditionally stable at 4.0 GHz.
There is therefore no need to plot the stability circles.
For maximum gain, we should design the matching sections for a conjugate

match to the transistor. Thus, I'g = I'}, and I'y = I'},, and I'y and I';. can be

determined from (6.43):
B, +./B? —4|C?
iy == ‘ = 0.872/123°
2C,
By + .,/ B} — 4|C,2
.= 2(‘: =0.876/61".

Then the effective gain factors of (6.19) can be calculated as

1
= —— =4.17 = 6.20 dB,
R T
Gy = |Su|* = 6.76 = 8.30 dB,
1 — |0 ?
Gome LU B =995dB,

|1 — 85l |2
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So the overall transducer gain will be
Gz, =620+ 8.30+2.22 = 16.7 dB.

The matching networks can easily be determined with a Smith chart using the
procedure described in Section 2.4, For the input matching section, we first plot
I's, as shown in Figure 6.12a. The impedance. Zg, represented by this reflection

Length of
open-circuited
stub (2064

Length of
series line
0.1204

(b)

FIGURE 6.12  Circuit and frequency response for the transistor amplifier of Example 6.3. (a) Smith

response.

chart for the design of the input matching network. (b) RF circuit. (¢) Frequency
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FIGURE 6.12 (Continued)

coefficient is the impedance seen looking into the matching section toward the
source impedance, Zp. Thus, the matching section must transform Z; to the
impedance Zg. There are several ways of doing this, but we will use an open-
circuited shunt stub followed by a length of line. Thus we convert to the normalized
admittance y, and work backward (toward the load on the Smith chart) to find that
a line of length 0.120 4 will bring us to the | + jb circle. Then we see that the
required stub admittance is + 3.5, for an open-circuited stub length of 0.206 A.
A similar procedure gives a line length of 0.206 A and a stub length of 0.206 4 for
the output matching circuit.

The final amplifier circuit is shown in Figure 6.12b. This circuit only shows
the RF components: the amplifier will also require some bias circuitry. The return
loss and gain were calculated using a commercial CAD package, interpolating
the necessary § parameters from the preceding table. The results are plotted in
Figure 6.12¢, and show the expected gain of 16.7 dB at 4 GHz, with a very good
return loss. The bandwidth where the gain drops by 1 dB is about 2.5%, so this
design is relatively narrowband. Q

Constant Gain Circles and Design for Specified Gain

In many cases it is preferable to design for less than the maximum obtainable gain, lo
improve bandwidth, to obtain a specific value of amplifier gain, or to minimize the effeqt
of device variations. This can be done by designing the input and output matching sections
to have less than maximum gains; in other words, impedance mismatches are purposely
introduced to reduce the overall gain. The design procedure is facilitated by plotting constant
gain circles on a Smith chart, to represent loci of I'y and I';_ that give fixed values of gain for
the input and output sections (G and G ). To simplify our discussion, we will only tm,t
the case of a unilateral device; the more general case of a bilateral device must sometimes
be considered in practice, and is discussed in detail in [2]-[4]. '
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In many practical cases |$)2| is small enough to be ignored, and the device can then
be assumed to be unilateral. This greatly simplifies the design procedure. The error in the
transducer gain caused by approximating |Sy2| as zero is given by the ratio G/ Gy It can
be shown that this ratio is bounded by

1 Gr 1

Y S E— 48
+U? "G ~ G-0F (049
where U is defined as the unilateral figure of merit,
StillSi2ll Sa1 1l S22
|11 11 S12[1 21 | S22 (6.49)

T =150 = S2P)’

Usually an error of a few tenths of a dB or less will justify the unilateral assumption.
The expressions for G ¢ and G for the unilateral case are given by (6.20a) and (6.20c):

1—|Ts)?
Bl o= — =8V
ST =T
| —jir
Gt = ———.
F T = 8wl P

These gains are maximized when I's = S}, and I';, = §3,. resulting in the maximum values
given by

1
G =1 6.50a
Sl'!l.ﬂl I - 13! ] |___ ( )
1
Ly =m——=—=- 6.50b
Lm.-u: 1 = |5122|2 ( )
Now define the normalized gain factors gg and g as
Gy 1 = |Tg? 3
= — l = S > 6.51
gs Cos e Surslz{ 11l (6.51a)
G 1—[Mg)?
g e — Bl (6.:51b)

- Gl 11— Snl'|

Then we have that ) < gg < l,and ) < g; = |.
For fixed values of gg and g;, (6.51) represents circles in the I's or Iy plane. To show
this, consider (6.51a), which can be expanded to give

gsll — SuTsl = (1 = [Ts[*)(1 — [Su ],
(gs1Snl*+1— IS0l — gs(SuTs + S;,T8) = 1 — |8u* — gs,
gs(Suls+SHry)  1—|Snul*—gs

Tl — = : (6.52)
TS = =golSuP T 1= (1 —golSul?
Now add gZ|S1*/[1 — (1 — gs)|S11 ) to both sides to complete the square:
o &sSh P (—1Sul — gl — (1 — gs)ISul) + g51Su
I —(1—gplSnul? [1—(1—gs)lSul*P '
Simplifying gives
A ST —g5(1 — |81 )7
I — 8591 | = gs(l —| ”|.,). (6.53)
1= (1—gg)lSul 1 =1 —gg)lSnl*
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which is the equation of a circle with its center and radius given by

gSS?Ki |

Cg= 1 6.54a)

T T (1 = g9)lSu? ©=8
JT=gs(1 = 1Su®

R_ = - —n 6.5%

YT - (1 —gs)Sul (>

The results for the constant gain circles of the output section can be shown to be

8L5% .

&y = = 6.55

TR o
JT=g0(1 — |8/ .

R, = gl —|82217) (6.5

1—(1—gu)lSnl>

The centers of each family of circles lie along straight lines given by the angle of §f
or §3,. Note that when gg (or g,) = | (maximum gain), the radius Rg (or Ry) = 0, and the
center reduces to Sy, (or 53,), as expected. Also, it can be shown that the 0 dB gain circles
(Gg = 1 or G; = 1) will always pass through the center of the Smith chart. These resully
can be used to plot a family of circles of constant gain for the input and output sections,
Then I's and I'; can be chosen along these circles to provide the desired gains. The choices
for I'g and ", are not unique, but it makes sense to choose points close to the center of the
Smith chart to minimize the mismatch, and thus maximize the bandwidth. Alternatively,
as we will see in the next section, the input network mismatch can be chosen to providea
low-noise design.

) > EXAMPLE 6.4 AMPLIFIER DESIGN FOR SPECIFIED GAIN
,,))>>

Design an amplifier to have a gain of 11 dB at 4.0 GHz. Plot the constant gain
circles for Gy = 2 dB and 3 dB, and G; = 0 dB and 1 dB. Calculate and plot the
input return loss and overall amplifier gain from 3 to 5 GHz. Use an FET with the
following § parameters (Zg = 50 Q):

J (GHz) Siy S Sia Saz
3 0.80/ =90 2.8/100° 0 0.66/—50°
4 0.75/—-120° 2.5/80° 0 0.60/=70°
5 0.71 /=140 2.3/60° 4] ().58/—85°
Solution

Since Sj2 = 0 and S| < 1 and |S52| < 1, the transistor is unilateral and uncon-
ditionally stable. From (6.50) we calculate the maximum matching section gains

das
Gy, = 1 =229=3.6dB
e s T T
1
Gry,=—o—=156=19dB.
LMHK ]_|322]"

The gain of the mismatched transistor is

Go = |Su|* = 6.25 =8.0dB,
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so the maximum unilateral transducer gain is
Gy, =3.641.948.0=13.5dB.

Thus we have 2.5 dB more gain than is required by the specifications. We use
(6.51). (6.54), and (6.55) to calculate the following data for the constant gain
circles:

Gs=3dB gy =0.875 C5=0.706/120° Rgs=10.166

Gg=2dB gg=0691 Cy=0.627£120° Rg=10.294

Gp=1dB g, =0806 C;=0.520/70" Ry =0.303

Gy =0dB g, =0640 C; =0440/70° R; =0.440

The constant gain circles are shown in Figure 6.13a. We can choose G = 2dB
and G = 1 dB, for an overall amplifier gain of 11 dB. Then we select I'g and I";,
along these circles as shown, to minimize the distance from the center of the chart
(this places I'y and I';. along the radial lines at 120° and 70°, respectively). Thus,

(a)

FIGURE 6.13 Circuit and frequency response for the transistor amplifier of Example 6.4. (a) Con-

stant gain circles. (b) RF circuit. (¢) Transducer gain and return loss versus frequency.
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FIGURE 6.13 (Continued)

'y = 0.33/1207 and I'y, = 0.22/707, and the matching networks can be designed
using shunt stubs as in Example 6.3.

The final amplifier circuit is shown in Figure 6.13b. The frequency response
was calculated using CAD software, with interpolation of the given § parameter
data. The results are shown in Figure 6.13c, where it is seen that the desired gain
of 11 dB is achieved at 4.0 GHz. The bandwidth over which the gain varies by
+1 dB or less is about 25%, which is considerably better than the gain bandwidth
of the maximum gain design of Example 6.3. The return loss. however, is not
very good, being only about 5 dB at the design frequency. This is due to the
deliberate mismatch introduced into the matching sections to achieve the specified
gain. &)

& LOW-NOISE AMPLIFIER DESIGN

Besides stability and gain, another important design consideration for an RF or mi-
crowave amplifier is its noise figure. In receiver applications especially, it is often req ol
to have a preamplifier with as low a noise figure as possible since, as we saw in Section 2.5,
the first stage of a receiver front end usually has the dominant effect on the noise perfor-
mance of the overall system. Generally it is not possible to obtain both minimum n
figure and maximum gain for an amplifier, so some sort of compromise must be made.
can be done by using constant gain circles and circles of constant noise figure 1o seled
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a usable trade-off between noise figure and gain. Here we will derive the equations for

constant noise figure circles, and show how they are used in transistor amplifier design.
As derived in [5], the noise figure of a two-port amplifier can be expressed as

Ry

F = Fuin
+GS

|¥s — Youl?, (6.56)

where the following definitions apply:

Yy = Gs + jBy = source admittance presented to transistor.

Yopt = optimum source admittance that results in minimum noise figure.
Finin = minimum noise figure of transistor, obtained when Yy = ¥ .
Ry = equivalent noise resistance of transistor.

G ¢ = real part of source admittance.

Instead of the admittances Yy and ¥, we can use the reflection coefficients I'y and
[opt, where

1 1 - _

Yy = T (6.57a)
1 <Py

) AR e, 6.57b

P Zo 1+ Top ( )

I"g is the source reflection coefficient defined in Figure 6.8. The quantities Fin, lopr. and Ry
are characteristics of the particular transistor being used, and are called the noise parameters
of the device; they may be given by the manufacturer, or measured.

Using (6.57), the quantity [Ys — YOPJE can be expressed in terms of I'g and gy

4  |Pg—Toul

Ys — Youl? = =5 6.58
o Pt' Zﬁ [1+ FS‘P” + rr;ptl" : :
Also,
_ 1 [1-Ty 1—1";;) 1 1—|Isf?

Gs = Re[Y5}) = — + )= 6.59
] (¥s} 2zn(1+rs 1+T%) " Zy|l+TgP (659

Using these results in (6.56) gives the noise figure as

s — Fopl?

B P ik, T Hop (6.60)

Zy (1 —|Ts[)I1+ Dol
For a fixed noise figure, F, we can show that this result defines a circle in the I'g plane.
First, define the noise figure parameter, N, as
|rS - l—‘up:i2 . Fr= Fm'm
1—|[gf? 4Ry /Zqg

which is a constant, for a given noise figure and set of noise parameters, Then rewrite (6.61)
as

N=

1+ ruptllv (6.61)

(s — PopXT§ — Tg) = N(1 — [Ts ),

TsT§ — (MsThy 4+ T§Top) + Topla = N — N[,

(FSngl + C3lopt) i N — Ir{}pt|2
N+ 1 N+

sl —
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Now add IFGPLF/(N + 1)? to both sides to complete the square to obtain

r N(N +1 — |Tgp|? _
rS L apt = \/ I :ptl } (662} |
N41 N +1
This expression defines circles of constant noise figure with centers at
I opt
Cp= A y 6.63a)
F= N (6.63a)
and radii of

NN +1=1Ppl?) |
Rp = (6.63b)

N+1

) > EXAMPLE 6.5 LOW-NOISE AMPLIFIER DESIGN
.,))))

A GaAs FET is biased for minimum noise figure and has the following § parameters
and noise parameters at 4 GHz (Z, = 50 Q): §); = 0.60/-60°, §3; = 1.9/817,
S12 = 0.05£26°, §3p = 0.5/—60°; Finip = 1.6dB, T'yp = 0.62£100%, Ry = 20 Q.
For design purposes, assume the device is unilateral, and calculate the maximum
error in Gy resulting from this assumption. Then design an amplifier having a
2.0.dB noise figure with the maximum gain that is possible with this noise figure.

Solution
We first compute the unilateral figure of merit from (6.49):

_ _ 1SullSial|S2ell 2|
(I =S H —[8221%)
Then from (6.48) the ratio Gy /Gy is bounded as
| Gy |
———— i
(1+U»¥ G (1=U)?

= 0.059.

or
Gy

0.89] <
Gru

< 1.130.

In dB,
—0.50 < Gy — Gy < 0.53 dB,

where G and Gy are now in dB. Thus, we should expect less than about £0.5 dB
error in gain due to the approximation of a unilateral device.

Next, we use (6.61) and (6.63) to compute the center and radius of the 2 dB
noise figure circle:

P e 1.58 — 1.445
_ min 1 rm 2 oo iR 0.62/100° 2 0.0086,
N —4RNqu |1+ ol 4(20/50) 4 | 0
S N
Cr = —2' — 0.56/100°,
P N+1
YN(N + 1= Topl)
g =0.24,
< N+1

This noise figure circle is plotted in Figure 6.14a. Minimum noise figure
(Fuin = 1.6 dB) occurs for 'y = [yp = 0.62/100°. Next, we calculate data for
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Noise figure
cirele »

(a)

50Q

(b)

FIGURE 6.14 Circuit design for the amplifier of Example 6.5. (a) Constant gain and noise figure
circles, (b) RF circuit.

several input section constant gain circles. From (6.54) we compute the following

data:
Gy (dB) 8s Cy R
I 1.0 0.805 0.52.£60° 0.300
1.5 0.904 0.56/60° 0.205
1.7 0.946 0.58.260° 0.150

These circles are also plotted in Figure 6.14a. We see that the Gg = 1.7 dB gain
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circle just intersects the F = 2 dB noise figure circle, and that any higher gain will
result in a worse noise figure. From the Smith chart the optimum solution is then
Iy = 0.53/75°, yielding Gy = 1.7 dB and F = 2.0 dB.
For the output section we chose I'y = 83, = 0.5/60° for a maximum G of
1
G = 1.33=1.25dB.

The transistor gain is
Gy = |83]° = 3.61 =5.58 dB.
so the overall transducer gain will be
Gy =Gs+ Gyp+ G =853 dB.

The complete AC circuit for the amplifier, using open-circuited shunt stubs in the
matching sections, is shown in Figure 6.14b. A computer analysis of the circuit
(with S)5  0) gave a gain of 8.36 dB. O

&. POWER AMPLIFIERS

Power amplifiers are used in the final stages of wireless transmitters to increase the
radiated power level. Typical output powers may be on the order of 0.3 to 0.6 W forg
handheld cellular or PCS phone, or in the range of 10-100 W for base station transmitters.
Important considerations for RF and microwave power amplifiers are efficiency, gain, and
intermodulation effects. Single transistors can provide output powers of 10 to 100 W at UHF
frequencies, while devices at higher frequencies are generally limited to output powers of
0.5 to 1 W. Various power combining techniques can be used in conjunction with multiple
transistors if higher output powers are required [2]-[4].

So far we have considered only small-signal amplifiers, where the input signal power
is small enough that the transistor can be assumed to operate as a linear device. The §
parameters of linear devices are well defined and do not depend on the input power level or
output load impedance, a fact that greatly simplifies the design of fixed-gain and low-noise
amplifiers. For high input powers (in the range of the 1 dB compression point or third-order
intercept point, for example), transistors do not behave linearly. In this case the impedances
seen at the input and output of the transistor will depend on the input power level, and thie
greatly complicates the design of power amplifiers.

Characteristics of Power Amplifiers and Amplifier Classes

The power amplifier is usually the primary consumer of DC power in most handheld
wireless devices, so amplifier efficiency is a very important consideration. One measure of
amplifier efficiency is the ratio of RF output power to DC input power:

7:,' . Pnul

Ppe
One drawback of this definition is that it does not account for the RF power delivered
at the input to the amplifier. Since most power amplifiers have relatively low gains, the

efficiency of (6.64) tends to overate the actual efficiency. A better measure that includes the
effect of input power is the power added efficiency. defined as

s 2o Bgs Tom— L —(1——')1)"“‘—(1~i ! (6.63)
i i ~ Poe G) Poc G

(6.64
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where G is the power gain of the amplifier. Silicon transistor amplifiers in the 800-900 MHz
band have power added efficiencies on the order of 80%, but efficiency drops quickly with
increasing frequency. Power amplifiers are often designed to provide the best efficiency,
even if this means that the resulting gain is less than the maximum possible.

Another useful parameter for power amplifiers is the compressed gain, G, defined as
the gain of the amplifier at the 1 dB compression point. Thus, if G is the small-signal
(linear) power gain, we have

Gy (dB) = Gy (dB) — 1. (6.66)

As we have seen in Chapter 3, nonlinearities can lead to the generation of spurious
frequencies and intermodulation distortion. This is a serious issue in wireless transmitters,
especially in a multicarrier system, where spurious signals may appear in adjacent channels.
Linearity is also critical for nonconstant envelope modulations, such as amplitude shift
keying and higher quadrature amplitude modulation methods.

Class A amplifiers are inherently linear circuits, where the transistor is biased to con-
duct over the entire range of the input signal cycle. Because of this, class A amplifiers have
a theoretical maximum efficiency of 50%. Most small-signal and low-noise amplifiers op-
erate as class A circuits. In contrast, the transistor in a class B amplifier is biased to conduct
only during one-half of the input signal cyvcle. Usually two complementary transistors are
operated in a class B push-pull amplifier to provide amplification over the entire cycle. The
theoretical efficiency of a class B amplifier is 78%. Class C amplifiers are operated with
the transistor near cutoff for more than half of the input signal cycle, and generally use
a resonant circuit in the output stage to recover the fundamental. Class C amplifiers can
achieve efficiencies near 100%, but can only be used with constant envelope modulations.
Higher classes, such as class D, E, F, and S, use the transistor as a switch to pump a highly
resonant tank circuit, and achieve very high efficiencies. The majority of wireless trans-
mitters operating at UHF frequencies or above rely on class A, AB. or B power amplifiers
because of the need for low distortion products.

Large-Signal Characterization of Transistors

A transistor behaves linearly for signal powers well below the 1 dB compression point
(P)), and so the small-signal S-parameters should not depend on either the input power level
or the output termination impedance. But for power levels comparable to or greater than Py,
where the nonlinearity of the transistor becomes apparent. the measured S parameters will
depend on input power level and the output termination impedance (as well as frequency.
bias conditions, and temperature). Thus large-signal § parameters are not uniquely defined
and do not satisfy linearity, and cannot be used in place of small-signal parameters. (For
device stability calculations, however, small-signal S parameters can generally be used with
good results.)

A more useful way to characterize transistors under large-signal operating conditions is
to measure the gain and output power as a function of source and load impedances. One way
of doing this is to determine the large-signal source and load reflection coefficients, I'gp and
I"; p, that maximize power gain for a particular output power (often chosen as Py ), and versus
frequency. Table 6.2 shows typical large-signal source and load reflection coefficients for
a typical NPN silicon bipolar power transistor, along with the small-signal § parameters.

Another way of characterizing the large-signal behavior of a transistor is to plot contours
of constant power output on a Smith chart as a function of the load reflection coefficient, I'; p,
with the transistor conjugately matched at its input. These are called load-pull contours,
and can be obtained using an automated measurement set-up with computer-controlled
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TABLE 6.2 Small-Signal S Parameters and Large-Signal Reflection Coefficients (Silicon
Bipolar Power Transistor)

f (MHz) S Siz Sa) Sn Isp I'ep G, (dBj

800  0.76£176° 4104767 0.065/49° 0.35/—163° 0.856/—167" 0.455/129° 13§
900  0.76£172° 3.42/72° 0.073.52° 0.35/.—167" 0.747/—177" 0.478.161° 120
1000 0.76£169° 3.08/69° 0.079/53" 0.36/—169" 0.797/—187" 0.491/185" 10.0

electromechanical stub tuners. A typical set of load-pull contours is shown in Figure 6.15,
Load-pull contours are similar in function to the constant gain contours of Section 6.4, but
are not perfect circles due to the nonlinearities of the device.

Nonlinear equivalent circuit models can also be developed and used to predict the
large-signal performance of FETs and BITs [7]. The dominant nonlinear parameters fora
microwave FET are C . gy, Cyy. and Rys. An important consideration in modeling large-
signal transistors is the fact that most parameters are dependent on device temperature,
which of course increases with output power. Equivalent circuit models can be very useful
when combined with computer-aided design software.
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FIGURE 6.15 Constant output power contours versus load impedance for a typical power FET.
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Design of Class A Power Amplifiers

In this section we will discuss the use of large-signal parameters for the design of class
A amplifiers. Since class A amplifiers are ideally linear, it is sometimes possible to use
small-scale S parameters for design. but better results are usually obtained if large-signal
parameters are available. As with small-signal amplifier design, the first step is to check the
stability of the device. Since instabilities begin at low signal levels, small-signal § parameters
can be used for this purpose. Stability is especially important for power amplifiers, as high-
power oscillations can easily damage active devices and related circuitry.

The transistor should be chosen on the basis of frequency range and power output,
ideally with about 20% more power capacity than is required by the design. Silicon bipolar
transistors have higher power outputs than GaAs FETs at frequencies up to a few GHz,
and are generally cheaper. Good thermal contact of the transistor package to a heat sink
is essential for any amplifier with more than a few tenths of a watt power output. Input
matching networks are generally designed for maximum power transfer (conjugate match-
ing), while output matching networks are designed for maximum output power (as derived
from I'zp). The optimum values of source and load reflection coefficients are different
from those obtained from small-signal § parameters via (6.43). Low-loss matching ele-
ments are important for good efficiency, particularly in the output stage, where currents are
highest. Internally matched chip transistors are sometimes available, and have the advan-
tage of reducing the effect of parasitic package reactances. thus improving efficiency and
bandwidth.

) > EXAMPLE 6.6 DESIGN OF A CLASS A POWER AMPLIFIER
n;)))

Design a power amplifier at 900 MHz using a Motorola MRF858S NPN Silicon
bipolar transistor with an output power of 3 W, Design input and output impedance
matching sections for the amplifier, find the required input power, and compute
the power added efficiency. Use the given S parameters to compute the source
and load reflection coefficients for conjugate matching, and compare to the actual
large-signal values for I'zp and Igp.

The small-signal S parameters of the MRF858S transistor at 900 MHz are:
S1 = 0.9402164°, 512 = 0.031£59°, 851 = 1.222/43%, S5, = 0.570/~165". For
a emitter-collector voltage Vep = 24 V and a collector current of Ie = 0.5 A,
the output power at the 1 dB compression point is 3.6 W, and the power gain

is 12 dB. The source and load impedances are Z;, = 1.2 4 j3.5 Q, and Z,, =
9.0+ j14.5 Q.
Solution

We begin by establishing the stability of the device. Using the small-signal §
parameters in (6.31) and (6.32) gives

[A] = 811522 — 8125
= [(0,940/1647)(0.570/—165") — (0.031.597)(1.222./43")|

= (.546
= Lo ISuP—|SnP+|AP _ 1 —(0.940) — (0.570)* +(0.546)"
N 218128 B 2(0.031)(1.222)

=:1.177,

showing that the device is unconditionally stable,
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FIGURE 6.16 RF circuit for the amplifier of Example 6.6.

Converting the large-signal input and output impedances to reflection coeffi-
cients gives

Iy, = 0.953£172°,
Pou = 0.716/—147°.

Using the small-signal S parameters in (6.43) to find the source and load
reflection coefficients for conjugate matching gives

Bi £ /B — 4O\

s — 0.963/—166°,
I's . 6
B>+ /B2 — 4|C, 2
[y :;c L

Note that these values approximately satisfy the relationships of (6.39), that I'y =
I'; and I'p = I, but not exactly. due to the fact that the § parameters used to

calculate I'g and I';, do not apply for large power levels. Thus we should use the
given large-signal reflection coefficients and let

My =T, = 0.953/-172°,
Iy =T, = 0.716£147°,

aut

Then the input and output matching networks can be designed as described in
Example 6.3. The complete AC amplifier circuit is shown in Figure 6.16.
For an output power of 3 W, the required input drive power is

Py (dBm) = Py (dBm) — G, (dB) = 10 log(3000) — 12 = 22.8 dBm = 189 mW.

Then the power added efficiency of the amplifier can be found from (6.65) to be

Pout — Pi 30 — 0. 189
i _ = 23.4%
Hee Poc (24)(0.5) ©
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PROBLEMS

6.1

6.2

6.3

6.4

6.5

6.6

6.7

6.8

6.9

6.10

Use the equivalent circuit of Figure 6.5 to derive the expression for the short-circuit current gain of a
bipolar transistor. Assume a unilateral device, where €. = (.

Derive expressions for the v (admittance) parameters of an FET using the unilateral equivalent circuit
model. Evaluate these parameters at 5 GHz for the following FET characteristics: Ry =7 Q, Ry =
400 22, Cgs = 0.3 pF. Cgy = 0.12 pF. Cyg = 0. g = 30 mS. Convert the y parameters to § parameters
for a 50 © ohm system impedance, and find the unilateral transducer gain assuming conjugately
matched source and load impedances. Compare with the value computed using (6.21).

Consider the RF network shown below, consisting of a 50 @ source, a 3 dB matched attenuator, and
a 50 € load. Compute the available gain, the transducer power gain, and the actual power gain. How
do these gains change if the load is changed to 25 Q7

Z,=50Q
Aftenuator
3dB Z;=500,250Q
50 €

An RF transistor has the following § parameters at 1.8 GHz: 8, = 0.34/-170", Sy = 4.3/80°,
Sip = 0.06.70°, 85y = 0.45/—25°, Determine the stability of the device, and plot the stability circles
if the device is potentially unstable.

Repeat Problem 6.4 for the following transistor S parameters: §; = 0.8/—-90°, 85, = 5.1/80%, §» =
0.3£707, 85, = 0.62/—407,

Use the ji-parameter test to determine which of the following devices are unconditionally stable, and
of those, which has the greatest stability.

Device Sn Sz S Saa
A 0.34/—170° 0.06.70° 4.3/80° 0.45:—-25°
B 0.75/—60° 0.2/70° 5.0.90° 0.51/60°
C 0.65/—140° 0.04:60° 2.4/50° 0.70/—65°

Show that for a unilateral device, where §)» = (), the p-parameter test of (6.38) implies that | Sy,| < 1
and |Sy:| < | for unconditional stability.

Prove that the condition for a positive discriminant in (6.43a). that is, Bf = 4|C,|*, is equivalent to
the condition that K* > 1.

Design a transistor amplifier for maximum gain at 5.0 GHz using a GaAs FET with the following
S parameters (Zy = 50 Q): Sy = 0.65/—140°, Sy = 2.4450°, §j2 = 0.04£60%, 85 = 0.70/—65".
Use open-circuited stubs for input and output matching.

Design an amplifier with maximum Gy using a transistor with the following § parameters at 1.8 GHz
(Zo =50 82): Sy = 0.61/=170°, 83y = 2.2432°, 8§15 =0, S = 0.72/—-83".
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6.11

6.12

6.13

6.14

6.15

6.16

6.17

Design an amplifier to have a gain of 10 dB at 2.4 GHz, using a transistor with the following §
parameters (Zy = 50 Q): 8y = 0.61£—170°, 83 = 2.24/32°, 813 = 0, §», = 0.72/—83°. Plot {auﬂ
use) constant gain circles for G = | dB and G = 2 dB. Use matching sections with open-circuited
shunt stubs.

Compute the unilateral figure of merit for the transistor of Problem 6.4, What is the maximum error
in the transducer gain if an amplifier is designed under the assumption that the device is unilateral]

Show that the 0 dB gain circle for G¢(Gg = 1), defined by (6.54), will pass through the center of the
Smith chart.

A GaAs FET has the following scattering and noise parameters at 8 GHz (Z, = 50 Q): §), =
0.7.—=110°, 83 = 3.5£60°, 812 = 0.02£60°, S5, = 0.8£=707, Fyyiy = 2.5dB, Iyp = 0.7£120°, Ry =
15 €2. Design an amplifier with minimum noise figure, and maximum possible gain. Use open-circuited
shunt stubs in the matching sections.
A GaAs FET has the following scattering and noise parameters at 6 GHz (Z, =50 Q) §,, =
0.6/—60°, 3y = 2.0£81%, S12 = 0, 8 = 0.7/-60°, Fyy = 2.0dB, Ty = 0.62/100°, Ry =204,
Design an amplifier to have a gain of 6 dB, and the minimum noise figure possible with this gain. Use
open-circuited shunt stubs in the matheing sections.
Repeat Problem 6.15, but design the amplifier for a noise figure of 2.5 dB, and the maximum gain
that can be achieved with this noise figure.

Use the transistor data given in Table 6.2 to design a power amplifier at 1 GHz with a power output of
I W. Design the input and output matching circuits using the given large-signal reflection coefficients,
Compute the required input power level.



- A mixer is a three-port device that uses a nonlinear or time-varying element to achieve
frequency conversion. As introduced in Chapter 1, an ideal mixer produces an output consisting
of the sum and difference frequencies of its two input signals. Operation of practical RF and
microwave mixers are usually based on the nonlinearity provided by either a diode or a transistor.
‘As we saw in Chapter 3, a nonlinear component can generate a wide variety of harmonics and
other products of input frequencies, so filtering must be used to select the desired frequency
‘components. Modern wireless transmitters and receivers typically use several mixers and filters
1o perform the function of frequency conversion between baseband signal frequencies and RF
carrier frequencies.

We begin this chapter with an overview of the process of frequency conversion and mixer
characteristics, which include losses, noise effects, and intermodulation distortion. We then
discuss diode mixer circuits and present several models to treat the nonlinear aspect of the diode
element. Next, we discuss the basic FET mixer, and conclude with circuits of more specialized
mixers.

7.1

MIXER CHARACTERISTICS

Here we describe the fundamental operation of frequency conversion in a mixer, the
important role of the image frequency. and basic mixer characteristics.

Frequency Conversion

The symbol and functional diagram for a mixer are shown in Figure 7.1. The mixer
symbol is intended to imply that the output is proportional to the product of the two input
signals. We will see that this is an idealized view of mixer operation, which in actuality

225
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FIGURE 7.1  Frequency conversion using a mixer. (a) Up-conversion, (b) Down-conversion,

produces a large variety of harmonics and other undesired products of the input signals due.
to the nonlinearity of the mixer,

Figure 7.1a illustrates the operation of frequency up-conversion, as occurs in a trans-
mitter. A local oscillator (LO) signal at the relatively high frequency fio is connected (o
one of the input ports of the mixer. The LO signal can be represented as

violt) = cos 27 frof. (1)
A lower frequency baseband or intermediate frequency (IF) signal is applied to the other

mixer input. This signal typically contains the information or data to be transmitted, and-
can be expressed for our purposes as

vip(t) = cos 27 figt. (7.2)
The output of the idealized mixer is given by the product of the LO and IF signals:

vrp(t) = Kvpo(t)vp(t) = K cos 27 fiot cos 2 fipt
K
= ?[cos 2 (fro — fiedt +cos2n(fo + fir)t] (7.3)

where K is a constant accounting for the voltage conversion loss of the mixer. The RF
output is seen to consist of the sum and differences of the input signal frequencies:

Jre = fro £ fir (74)

The spectrum of the input and output signals are shown in Figure 7.1a, where we see that
the mixer has the effect of modulating the LO signal with the IF signal. The sum and
difference frequencies at fio £ fip are called the sidebands of the carrier frequency fm
with fio + fir being the upper sideband (USB), and fio — fir being the lower ﬂdeband'
(LSB). A double-sideband (DSB) signal contains both upper and lower sidebands, as in
(7.3), while a single-sideband (SSB) signal can be produced by filtering or by using g
single-sideband mixer.
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Conversely. Figure 7.1b shows the process of frequency down-conversion, as used ina
receiver. In this case an RF input signal of the form

vre(t) = cos 2m frrt. (7.5)

is applied to the input of the mixer. along with the local oscillator signal of (7.1). The output
of the mixer is

vip(t) = Koge(t)vio(t) = K cos 27 frpt €08 27 frof
K ; . . )
= E-['CUS 27 ( frp — fro)t + cos 2 ( fre + fro)t] (7.6)

Thus the mixer output consists of the sum and difference of the input signal frequencies. The
spectrum for these signals is shown in Figure 7.1b. In practice, the RF and LO frequencies
are relatively close together, so the sum frequency is approximately twice the RF frequency,
while the difference is much smaller than frp. The desired IF output in a receiver is the
difference frequency, frr — fLo. which is easily selected by low-pass filtering:

fir = fre — fro (7.7)

Note that the preceding discussion only considers the sum and difference outputs as gener-
ated by multiplication of the input signals, whereas in a realistic mixer many more products
will be generated due to the more involved nonlinearity of the diode or transistor. These
products are usually undesirable, and removed by filtering.

Image Frequency

In areceiver the RF input signal at frequency fgr is typically delivered from the antenna,
which may receive RF signals over a relatively wide band of frequencies. For a receiver
with a local oscillator frequency fio and intermediate frequency fir, (7.7) gives the RF
input frequency that will be down-converted to the IF frequency as

fre = fro + fir (7.8a)

since the insertion of (7.8a) into (7.7) yields fir (after low-pass filtering). Now consider the
RF input frequency given by

fm = fro — fir. (7.8b)

Insertion of (7.8b) into (7.7) yields —fir (after low-pass filtering). Mathematically, this
frequency is identical to fir because of the fact that the Fourier spectrum of any real signal
is symmetric about zero frequency, and thus contains negative frequencies as well as positive.
The RF frequency defined in (7.8b) is called the image response. The image response is
important in receiver design because a received RF signal at the image frequency of (7.8b)
is indistinguishable at the IF stage from the desired RF signal of frequency (7.8a), unless
steps are taken in the RF stages of the receiver to preselect signals only within the desired
RF frequency band. This issue will be further discussed in Chapter 10 on receiver design.

The choice of which RF frequency in (7.8) is the desired and which is the image
response is arbitrary, depending on whether the LO frequency is above or below the desired
RF frequency. Another way of viewing this difference is to note that fir in (7.8) may be
negative. Observe that the desired and image frequencies of (7.8a) and ( 7.8b) are separated
by 2 fir.

Another implication of (7.7) and the fact that fir may be negative is that there are two
local oscillator frequencies that can be used for a given RF and IF frequency:

Jro = fre £ fir, (7.9)
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since taking the difference frequency of frp with these two LO frequencies gives % fip.
These two frequencies correspond to the upper and lower sidebands when a mixer is operated
as an up-converter. In practice, most receivers use a local oscillator set at the upper sideband,
Jfio = fre + fir, because this requires a smaller LO tuning ratio when the receiver must
select RF signals over a given band.

EXAMPLE 7.1 IMAGE FREQUENCY
o 1)))))

The 1S-54 digital cellular telephone system uses a receive frequency band of 869—
894 MHz, with a first [F frequency of 87 MHz, and a channel bandwidth of 30 kHz.
What are the two possible ranges for the LO frequency? If the upper LO frequency
range is used, determine the image frequency range. Does the image frequency
fall within the receive passband?

Solution
By (7.9), the two possible LO frequency ranges are

956 to 981 MHz
782 to 807 MHz

Using the 956-981 MHz LO, (7.7) gives the IF frequency as
fie = frr — fro = (869 to 894) — (956 to 981) = —87 MHz,

fio = frr £ fir = (869 to 894) + 87 =

so from (7.8b) the RF image frequency range is
Jiv = fio — fir = (956 to 981) + 87 = 1043 to 1068 MHz,

which is well outside the receive passband. O

Conversion Loss

Mixer design requires impedance matching at three ports. complicated by the fag
that several frequencies and their harmonics are involved. Ideally, each mixer port would:
be matched at its particular frequency (RF, LO, or IF), and undesired frequency products
would be absorbed with resistive loads, or blocked with reactive terminations. Resistive
loads increase mixer losses, however, and reactive loads can be very frequency sensitive,
In addition, there are inherent losses in the frequency conversion process because of the
generation of undesired harmonics and other frequency products. 1

An important figure of merit for a mixer is therefore the conversion loss, which is
defined as the ratio of available RF input power to the available IF output power, expressed
in dB:

L. = 10log available RF input power

available IF output power ek (18

Conversion loss accounts for resistive losses in a mixer as well as loss in the frequency
conversion process from RF to IF ports. Conversion loss applies to both up-conversion and
down-conversion, even though the context of the above definition is for the latter case. Si
the RF stages of receivers operate at much lower power levels than do transmitters, minim
conversion loss is more critical for receivers because of the importance of minimizing loss
in the RF stages to minimize receiver noise figure.

Practical diode mixers typically have conyersion losses between 4 and 7 dB in the |-
10 GHz range. Transistor mixers have lower conversion loss, and may even have conversi
gain of a few dB. One factor that strongly affects conversion loss is the local oscillator p
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level: minimum conversion loss often occurs for LO powers between 0 and 10 dBm. This
power level is large enough that the accurate characterization of mixer performance often
requires nonlinear analysis.

Noise Figure

Noise is generated in mixers by the diode or transistor elements, and by thermal sources
due to resistive losses. Noise figures of practical mixers range from 1 dB to 5 dB, with diode
mixers generally achieving lower noise figures than transistor mixers.

The noise figure of a mixer depends on whether its input is a single sideband signal or a
double sideband signal. This is because the mixer will down-convert noise at both sideband
frequencies (since these have the same IF), but the power of a SSB signal is one-half that
of a DSB signal (for the same amplitude). To derive the relation between the noise figure
for these two cases, first consider a DSB input signal of the form

vpse(t) = Alcos(wro — wip)t + cos(wro + @)t (7.11)
Upon mixing with an LO signal cos w ot and low-pass filtering, the down-converted IF

signal will be

AK AK
viR(t) = = cos(wpt) + == cos(—wpt) = AK cos wpt, (7.12)
where K is a constant accounting for the conversion loss for each sideband. The power of
the DSB input signal of (7.11) is

A? A7
S =—+— =A%
(=3 +3
and the power of the output IF signal is
AE K?.
So = ‘
2

For noise figure, the input noise power is defined as N; = kTy B, where Ty =290 K and
B is the IF bandwidth. The output noise power is equal to the input noise plus Nadged, the
noise power added by the mixer, divided by the conversion loss (assuming a reference at
the mixer input):

N, = (kTyB + Nuddud)_
L.
Then using the definition of noise figure gives the DSB noise figure of the mixer as
S; N, 2 Naddcd)
Fpgs = = 1 ' 7.13
PS8 = SN KﬂLc( t 0B )

The corresponding analysis for the SSB case begins with a SSB input signal of the
form

vssp(t) = A cos(wro — @Rl (7.14)

Upon mixing with the LO signal cos wyof and low-pass filtering, the down-converted IF
signal will be

AK .
vipll) = e cos(wipt). (7.15)
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7.2

The power of the SSB input signal of (7.14) is

AZ’.
S.f = _2'_!
and the power of the output IF signal is
AE Kﬂ
So =
8

The input and output noise powers are the same as for the DSB case, so the noise figure for
an SSB input signal is

(7.16)

Ry = SiNo 4 (1 N Nuddcd)

S,N;, KL, kTyB

Comparison with (7.13) shows that the noise figure of the SSB case is twice that of the DSB
case:

Fssp = 2Fpgg. (7.17)

Intermodulation Distortion

Since mixers involve nonlinearity, they will produce intermodulation products. Typical
values of P; for mixers range from 15 dBm to 30 dBm.

Isolation

Another important characteristic of a mixer is the isolation between the RF and LO
ports. Ideally, the LO and RF ports would be decoupled, but internal impedance mismatches
and limitations of coupler performance often result in some LO power being coupled out
of the RF port. This is a potential problem for receivers that drive the RF port directly from
the antenna, because LO power coupled through the mixer to the RF port will be radiated
by the antenna. Because such signals will likely interfere with other services or users, the
FCC sets stringent limits on the power radiated by receivers. This problem can be la:gely |
alleviated by using a bandpass filter between the antenna and mixer, or by using an RF
amplifier ahead of the mixer. Isolation between the LO and RF ports is highly dependent
on the type of coupler used for diplexing these two inputs, but typical values range from
20 dB to 40 dB.

DIODE MIXERS

In Section 7.1 we treated the mixer from the idealized view that its output was pro-
portional to the product of its input signals, which has the effect of producing sum and
difference frequencies when the inputs are sinusoidal. Here we present a treatment of more
realistic mixers, and show that the output does indeed contain a term proportional to the
product of the inputs, but many higher order terms as well, In this section we discuss mixers
using diodes as the nonlinear element; mixers using FETs will be discussed in the following
section,

The nonlinear V-I characteristics of a diode make it useful for rectifiers, detectors, and
mixers [1]. but analysis is difficult because of this nonlinearity. We will discuss sevetg;li
approaches to this problem. The first is to assume that the signal power presented to the
diode is small enough that a Taylor series approximation can be made for the diode current
in terms of the diode voltage. This is known as the small-signal approximation, and le
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to useful qualitative results for many rectifier, detector, and mixer circuits [1]. The small-
signal approximation generally does not give very accurate results in the practical case
when a mixer is driven with a relatively high LO power. For this reason we also present a
large-signal model for the diode mixer, using a fully nonlinear analysis. Finally, we present
an alternative model for a mixer, based on an ideal switching circuit.

Small-Signal Diode Characteristics

The I-V response of a diode can be written as
I(V) = I(e*" = 1), (7.18)

where V is the voltage across the diode, / is the current through the diode, and /; is the reverse
saturation current [1]-[3]. The constant ¢ = ¢/nk T, where ¢ is the charge of an electron, k
is Boltzmann’s constant, T is the temperature in Kelvin, and n is the diode ideality factor.
For typical RF diodes, I, is between 107® and 107"> A, and « is approximately 1/(28 mV)
for T = 290 K. The ideality factor, n, depends on the structure of the diode, and can vary
from 1.2 for Schottky barrier diodes to about 2.0 for point-contact silicon diodes. The I-V
response of (7.18) is shown in Figure 7.2,

Now consider the total diode voltage and current to consist of small AC signals, v(r)
and i(r), superimposed on a DC bias [, and Vjy:

I =1y+i(r), (7.19a)
V = Vo+v@), (7.19b)
where Iy = (V) is the DC bias current. [f we assume that i (f) and v(r) represent only small

excursions about the constant bias terms, we can represent the total current as a Taylor series
in terms of the applied AC signal voltage:

!
I(V) = lg+ Gqu(t) + 5G;fv’*(r) +oe, (7.20)
where G is the dynamic conductance of the diode, defined as
dl
G'd = e b a,!yeﬂ'\":: = Q‘:()'{] + L}.). (7?.151)
dViy_y,
and G/, is the derivative of the dynamic conductance:
dG, d*1 . ;
Gl === - = LM =a G, (7.21b)
TV |yeyy AV ey,

The Taylor series of (7.20) constitutes the small-signal approximation for a diode. The
first two terms, representing DC bias current and the linear diode response, are of little

A
!

Ly

FIGURE 7.2 V-1 characteristic of a diode.
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interest to us because no frequency conversion occurs through these terms. The third term,
containing v?, represents the square-law response of the diode, and is responsible for the:
dominant frequency conversion terms. We will now apply the small-signal approximation
to a basic diode mixer circuit,

Single-Ended Mixer

A basic diode mixer circuit is shown in Figure 7.3a. This type of mixer is calleda
single-ended mixer because it uses a single diode element. The RF and LO inputs are
combined in a diplexer, which superimposes the two input voltages to drive the diode. The
diplexing function is easily implemented using an RF coupler or hybrid junction to provide
combining as well as isolation between the two inputs. The diode may be biased with a DC
bias voltage, which must be decoupled from the RF signal paths. This is done by using DC
blocking capacitors on either side of the diode, and an RF choke between the diode and the
bias voltage source. The AC output of the diode is passed through a low-pass filter to provide
the desired IF output voltage. This description is for application as a down-converter, but
the same mixer can be used for up-conversion since each port may be used inlerchan‘gr,eaalb'_l}r-.j
as an input or output port.

The AC equivalent circuit of the mixer is shown in Figure 7.3b, where the RF and L0

(|
A

input voltages are represented as (wo series-connected voltage sources. Let the RF input
voltage be a cosine wave of frequency wgg:
URp(t) = Vig cos wypt, (7.22)

and let the LO input voltage be a cosine wave of frequency w:

v Lofr) = Vl.() COSwynl. (723}[.

+DC
bias
Diplexing RF Low-pass
RE  coupler hEJC;k ehoke filter .
nput o . []
X 4 S g ] g
URF(.'} DC IF
Lo Diode block output
input
UI.O(”

()

i:‘(r}

Vpplt )

L |

wpplt)

(h)

FIGURE 7.3  (a) Circuit for a single-ended mixer. (b) Idealized equivalent circuit of the single
ended mixer.

<
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Using the small-signal approximation of (7.20) gives the total diode current as

G.f
i(1)= Iy + Galurp(t) + vio(n)] + TJ[URF“} + v + -+ (7.24)

The first term in (7.24) is the DC bias current, which will be blocked from the IF output
by the DC blocking capacitors. The second term is a replication of the RF and LO input
signals, which will be filtered out by the low-pass IF filter. This leaves the third term, which
can be rewritten using trigonometric identities as

; G, :
i(r) = ——23[ Virp cos wrpt + Vip cos oot

2

G.’
= 7" [Vite cos® wret + 2VerVio COS wREf COS 010t + Vio cos® wiot |

'
=4

4
+ 2V Vio cos(wre — wLo)t + 2VrVio cos(@rr + @10)! ]

[V,f,:(l + cos 2wrst) + Vio(1 4 cos 2w101)

This result is seen to contain several new signal components, only one of which produces
the desired IF difference product. The two DC terms again will be blocked by the blocking
capacitors, and the 2wgr, 2w 10, and wgrF + @1 terms will be blocked by the low-pass
filter. This leaves the IF output current as

)

G
iE(t) = —21-!- Ve Vi cos wipt, (7.25)

where wp = wrp — w10 is the IF frequency. The spectrum of the down- converting single-
ended mixer is thus identical to that of the idealized mixer shown in Figure 7.1b.

Large-Signal Model

While the small-signal analysis of a mixer demonstrates the key process of frequency
conversion, it is not accurate enough to provide a realistic result for conversion loss. This
is primarily because the power supplied to the mixer LO port is usually large enough to
violate the small-signal approximation. Here we consider a fully nonlinear analysis of a
resistive diode mixer [3]-[4], with the goal of deriving an expression for the conversion loss
defined in (7.10). The term “resistive” in this context means that reactances associated with
the diode junction and package are ignored, to simplify the analysis. Our results should
be useful in understanding the nonlinear operation and losses of the diode mixer, but for
actual design purposes modern computer-aided design (CAD) software is preferred [5].
Such software can model the diode nonlinearity, as well as the effects of diode reactances
and impedance matching networks.

We again assume a diode I-V characteristic as given by (7.18), with a relatively low-
level RF input voltage given by (7.22), and a much larger LO pump signal given by (7.23).
A DC bias current may also be present, but will not directly enter into our analysis. As
we have seen from the small-signal mixer analysis, these two AC input signals generate a
multitude of harmonics and other frequency products:

WRF RF input signal (low power)
WIF = WRF — WLO IF output signal (low power)
WM = WL — W image signal (low power)

wLo LO input signal (high power)
neaLo harmonics of LO (high power)

nwio =+ wF harmonic sidebands of LO (low power)
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In a typical mixer, harmonics of the LO and the harmonic sidebands are terminated
reactively, and therefore do not lead to much power loss. This leaves three signal frequencies
of most importance: g, wir, and wpy. To evaluate conversion loss, we will find the
available power of the RF input signal, the power of the IF output signal, and the power lost.
in the image signal. The image signal is important because it is relatively close in frequency
to the RF signal, and thus sees essentially the same load. We will see that approximately
half the input power gets converted to the image frequency. Note that the image term af
frequency wm = wio — wrr = 2010 — wWrE Was not expllclliy shown in the small-signal
expansion of (7.24), since this product is generated by the v* term of (7.20).

Under the assumption that the RF input voltage is small. we can write the AC diode
current as a Taylor series expansion about the LO voltage as ]

I ,d*I
+._

[ dl
i(v)=I(vpo) +v—— 3 dV’

v,

(7.26)

This Taylor series is similar in form to (7.20), as used for the small-signal analysis, but with
the important difference that the expansion point here is about the LO voltage, whereas
(7.20) was expanded about the DC bias point. The first term in (7.26) is due only to the
LO input, and does not enter into the calculation of conversion loss. The second term is
a function of the RF and LO input voltages, and will provide a good approximation for
the three products at frequencies wgp, @k, and wy, with a large LO pump signal. The
coefficient of the second term has dimensions of conductance, so we can use (7.18) to write
the differential conductance as

rats - o Vig coswy gl
| vig O le d (7.27),

(1) al I
glt)= — =wle
v,

Then for small input voltages v(r) we can write the resulting diode current as
i(r) = g(t)v(r) (7.28)

We see from (7.27) that g(r) is a real number (consistent with our description as a resistive
mixer) and is a periodic function of the LO frequency. Thus, g(t) can be expressed as i
Fourier cosine series in terms of harmonics of wio:

oo
gt)=go+ Z 28, COS W ol (7.29)"

n=lI

with Fourier coefficients given by

| r ) aw ol i o Vi cosmiol
g = — glt)cosnw ot df = ——— ORI cos nw ot di
T 0 2 ¥
u,‘] 2m
5 " )
= o VoY cosnb de = al 1, (aVio) (7.30)
2 Jo

where 7, (x) is the modified Bessel function of order n, defined in Appendix B. Now let the
AC diode current consist of three components at the frequencies wrp, wip. and w:

i(t) = Igpcoswppt + lipcos wet + v cos @t (7.31)

where Igp, fip. and Iy are the amplitudes of the RE, IF, and image signals to be delermmed 2
If the RF voltage of (7.22) is applied to the diode through a source resistance R,, and the’
and image ports are terminated in load resistances Ryp and R, respectively, therl the veltage_
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FIGURE 7.4  Equivalent circuit for the large-signal model of the resistive diode mixer.

across the diode can be written as
v(t) = Vi coswppt — IRy COS wrpt — I Rip cos wpt — I Rg cos wml. (7.32)

The equivalent circuit consists of a three-port network, with one port for each of the
frequency components at wgg, @, and @y, as shown in Figure 7.4. We assume the
terminations for the RF and image ports are identical, because wgy is very close to wpw,
while the termination for the IF port may be different.

Using the first three terms of the Fourier series of (7.29) for the diode differential
conductance gives

g(t) = go+ 281 coswiof + 2g2 cos 2wLol. (7.33)

Multiplying the voltage of (7.32) by the conductance in (7.33), and matching like
frequency terms with the current of (7.31) gives a system of three equations for the unknown
port currents:

Ipy g & & || Ver— IreRy
Iy |l={&1 8 & —IpRE |, (7.34)
Iim g 8 Lo —Iim Ry

where Vir is the source voltage, and the g, s are defined in (7.30). Note that multiplication
of (7.32) by (7.33) creates several frequencies in addition to @grg, @ir, and ww. but we
assume these frequencies to be reactively terminated so that they do not lead to significant
power dissipation.

The easiest way to find the available power from the IF port is to first find the Norton
equivalent source for the IF port. As shown in Figure 7.5, this consists of a current source
equal to Isc, the short-circuit current at the IF port, and Gy, the conductance seen looking
into the IF port. This conductance can be found as G = Isc/ Voc. where Vog is the open-
circuit voltage of the IF port. The short-circuit IF port current can be found by setting
Ry = 0in (7.34) and solving for /ip. After some straightforward algebra, we obtain

g1 Vrr

-, (7.35)
1+ goR, + g2Ry

Isc = —lielpe =0

FIGURE 7.5 Norton equivalent circuit for the IF port of the large-signal model of the resistive

diode mixer.
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The open-circuit IF port voltage is found by setting /i = 0. and solving (7.34) for Vg

81 Vrr
2¢{ R, — gogaRy — go(l + goRy)

(7.36)

Voc = Viplip=0 =

Then the Norton conductance of the IF port is

Ise 281 R,

Gip= — = _——
J1F 80 1+30Rg +83Rg

Voo (7.37)

The available output power at the IF port is

|Isc|* !
Prr_awil = A" (7.383)
and the available input power from the RF source is
| Vie|* B
Pr_avail = 4 Rg . (?3%)

So from (7.10) the conversion loss is (not in dB)

Prp-awil _ (1 +80Re + 2Ry )[80(]+80R + 82R,) — 281R]

L=
Pig—avail R

(7.39)

Note that the conversion loss does not depend on the IF port termination, Ry, because of
the use of available powers. It does depend on R,. the RF and image port terminations, §
it is possible to minimize the conversion loss by properly selecting R,,. If we let x = I;’Ril
qa=gy+grand b = ?.g /go, then (7.39) can be rewritten as

_ 2Ax+a)x+a-— b) -
Be= bx ' 4

Differentiating with respect to x and setting the result to zero gives the optimum value of x
as

Xopt = vala — b), (T41)

for which the minimum value of conversion loss is

2la + Jata — b)|la — b + Jala — b))

L‘—min —
¢ byala —b) 74
2Va+a=bF _,1+T=b/a -
b N 1 —JT1=bJa

We can evaluate this result by approximating values for gg, g;. and g-. For an LO inpt
power of 10 mW, Vi is about 0.707 V rms, and e = 1/28 mV, so « Vo, the argumen
of the modified Bessel functions for g, given in (7.30), is approximately 25, Thus th
modified Bessel functions can be approximated asymptotically using the large-argument
formula given in Appendix B, and the g,’s simplified as |

WVLU
w =l 0 (@Vig) = Igi 74
gy =ald(aVip) =« T (7.43)
Thus
b 2g°
2 81 o4 (7.4

a  golgo+g2)
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and the minimum conversion loss of (7.42) reduces to L, = 2, or 3 dB. This means that half
the RF input power is converted to IF power, and half is converted to power at the image
frequency. In principle this result could be improved by terminating the image port with a
reactive load, but it is usually difficult in practice to separate the image termination from
the RF termination. Also, this result is highly idealized in that it assumes no power loss at
higher harmonic frequencies, and it ignores diode reactances,

This same model can be used to derive the SSB noise temperature for the resistive
mixer as

T
To= (L - 1), (7.45)

where n is the diode ideality factor and T is the physical temperature of the diode [3].

Switching Model

The large-signal model suggests that the diode mixer can be viewed as a switch. As
the LO voltage cycles between positive and negative values of cos wyof. the diode becomes
conducting or nonconducting, respectively. Thus, the diode conductance (the ratio of diode
current to diode voltage) switches between large values and zero at the same rate as the
LO voltage. Figure 7.6 shows a typical diode conductance waveform, where T = 27m/w o
is the period of the LO waveform.

The conductance waveform of Figure 7.6 can be calculated directly from the diode
V-I characteristic of (7.18), or from the Fourier series representation of (7.29). But since a
conductance greater than a few Siemens is essentially a short circuit, we can approximate
the diode conductance as the square wave shown in Figure 7.7. This square wave has a
Fourier transform given by

1 =2 7
elr) = 5 + Z = sin ? COS Rl , (7.46)

n=I

which is similar in form to the Fourier series of (7.29).
An equivalent circuit of the diode mixer then consists of the RF input voltage applied
across a load resistor in series with an ideal switch, as shown in Figure 7.8. The time-varying

el

-\llllnu|Jl\n-gxh|1Jl\|||I|-1Jl\AJ;1[11rJ_

0.0 0.5 1.0 1.5 2.0 2.5 3.0 35 4.0
Hr

FIGURE 7.6  Conductance waveform of a mixer diode pumped with a large-signal LO.
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FIGURE 7.7  LO voltage waveform and idealized square-wave diode conductance waveform for
the switching model of a diode mixer.

switch conductance is given by (7.46). The diode current can be found by multiplying the:
RF input voltage of (7.22) by the conductance of (7.46):

&

. 1 29 R
i) = g(tvgelt) = Vrp 3 cos wrpt + Z E sin —- cos nwpol cos wgpl

h=1
1 _ > 2 . nx
= — Vgp | COS wrpt + Z —— sin — [cos(wgy + wrp)t + cos(awpyr — nwp o]
2 = nm 2
(741)

Filtering all but the lowest-frequency component for the n = 1 term of the summation gives
the desired IF output as

Ve
— COSwp!,
T
with
W = WRF — WLO.

The switching model is useful for mixers of any type, including the FET mixer discussed
in the following section. Note that the switching model of a mixer can be considered asg
linear. but time-varying, circuit.

+ i(r)l
vgglf) @ -
?“"LEJ

FIGURE 7.8  Equivalent circuit for the switching model of the diode mixer.
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FET MIXERS

Mixers can also be implemented by using the nonlinear properties of transistors, FETs,
in particular, offer low noise characteristics and easy integration with other circuitry, such
as switches and low-noise amplifiers. Transistor mixers can provide conversion gain, but
their noise figure is generally not as good as can be obtained with diode mixers. FET mixers
also offer higher dynamic range. The following table compares the characteristics of typical
diode and FET mixers.

Mixer Conversion Noise 1 dB 3rd Order
Type Gain Figure Compression Intercept
Diode —5dB 5-7dB —6to —1 dBm 5dBm
FET 6dB 7-8 dB 5106 dBm 20 dBm

Because a FET mixer has conversion gain, but usually worse noise figure, the proper
comparison with a diode mixer should include the cascade effect of adjacent stages.

In this section we will analyze the single-ended FET mixer, and derive an expression
for its conversion gain. We will also discuss a few other popular FET mixer configurations.

Single-Ended FET Mixer

There are several FET parameters that offer nonlinearities that can be used for mixing,
but the strongest is the transconductance, g,,, when the FET is operated in a common source
configuration with a negative gate bias. Figure 7.9 shows the variation of transconductance
with gate bias for a typical FET. When used as an amplifier, the gate bias voltage is near
Zero, or positive, so the transconductance is near its maximum value, and the transistor
operates as a linear device. When the gate bias is near the pinch-off region, where the
transconductance approaches zero, a small variation of gate voltage can cause a large
change in transconductance, leading to a nonlinear response. Thus the LO voltage can be
applied to the gate of the FET to pump the transconductance to switch the FET between
high and low transconductance states, and provide mixing in much the same manner as the
switching model discussed in the previous section,

The circuit for a single-ended FET mixer is shown in Figure 7.10. A diplexing coupler is
used to combine the RF and LO signals at the gate of the FET. An impedance matching net-
work is also usually required between the inputs and the FET, which typically presents a very
low input impedance. RF chokes are used to bias the gate at a negative voltage near pinch-off,
and to provide a positive bias for the drain of the FET. A bypass capacitor at the drain pro-
vides a return path for the LO signal, and a low-pass filter provides the final IF output signal.

&y (mS)
30

Pinch
off

10 l
| | | |

FIGURE 7.9  Variation of FET transconductance versus gate-to-source voltage.
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FIGURE 7.10 Cireuit for a single-ended FET mixer.

Our analysis of the mixer of Figure 7.10 follows the original work described in ref-
erence [6]. The simplified equivalent circuit is shown in Figure 7.11 and is based on the
standard unilateral equivalent circuit for a FET. The RF and LO input voltages are given
in (7.22) and (7.23). Let Z, = R, + j X, be the Thevenin source impedance for the RF
input port, and Z; = R; + j X be the Thevenin source impedance at the IF output port.
These impedances are complex to allow us to conjugately match the input and output ports
for maximum power transfer. The LO port has a real generator impedance of Zy, since we.
are not concerned with maximum power transfer for the LO signal.

As we did for the large-signal analysis of the diode mixer, we express the LO pumped
FET transconductance as a Fourier series in terms of harmonics of the LO signal: |

oo
g(t) =gy +2 Z £ COSNW Lot (7.48)

n=1

Because we do not have an explicit formula for the transconductance, we cannot calculate
directly the Fourier coefficients of (7.48), but must rely on measurements for these values.
As in the case of the switching model, the desired down-conversion result is due to then = |
term of the Fourier series, so we only need the g, coefficient. Measurements typically give
a value in the range of 10 mS for g;.

The conversion gain of the FET mixer can be found as

[V Re ,
L Z: 2 4R, R, | VY
Gc — IF—avail = | L] — = z -,L Y (7'49)1
Pre—avail | Vrr | |Z, l" Vir
4R,

where VI is the IF drain voltage, and the impedances Z; and Z, are chosen for maximun
power transfer at the RF and IF ports. The RF frequency component of the phasor voltage

FIGURE 7.11 Equivalent circuit for the FET mixer for Figure 7.10.
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across the gate-to-source capacitance is given in terms of the voltage divider between Z,,
R;.and Cy:

Vrr Vrr

‘ T 1 1+ JoreCalRr + Zs)
jormCis [(R.- Lz - j ] + jorpCys(Ri + Z)
wRFC oy

RF
Ve =

(7.50)

Multiplying the transconductance of (7.48) by vRF(71) = VR  cos wrpt gives terms of the
form

g,,,(f)l’f.u:(f} = g0 VE.RF cos wppt + 2g) VLRF COS (WRET COSwiof +- . (7.51)

The down-converted IF frequency component can be extracted from the second term
of (7.51) using the usual trigonometric identity:

g0, = 81V cosort. (7.52)

Then the IF component of the drain voltage is, in phasor form,

VIF=_gIVRF( RyZy )= —g1 Ve ( RiZ, ) (7.5%)
9 C\Ri+Z.) 1+ joreColRi + ZH\Ri+ Z1 )’

where (7.50) has been used. Using this result in (7.49) gives the conversion gain (before
conjugate matching) as

( 281 Ry R, Ry

wRFCg.v) 15 | ¥ [(Ra‘ I RL_}z + Xi] )
(RE+R3J"+(X3_GJ C
RF% gy

Gl‘ | nit

matched -

We must now conjugately match the RF and IF ports. Thus we let R, = Rj, X, = L/wgpCyy,
R; = Ry, and X; = 0, which reduces the above result to

g‘]? Ry )
Go=r———. (7.54
4w§FC§S R,‘ }
The quantities gy, Ry, R;, and Cy are all parameters of the FET. Practical mixer circuits
generally use matching circuits to transform the FET impedance to 50 © for the RF, LO,
and [F ports.

) > EXAMPLE 7.2 MIXER CONVERSION GAIN
.,))>>

A single-ended FET mixer is to be designed for a wireless local area network
receiver operating at 2.4 GHz. The parameters of the FET are: Ry = 300 Q, R; =
10 R, Cyy = 0.3 pF,and g; = 10 mS. Calculate the maximum possible conversion
gain.

Solution
This is a straightforward application of the formula for conversion gain given
in (7.54):

giRy (10 x 1072(300)

g el = =36.6 = 15.6 dB.
J0ZC2L R, 4224 x 10°)2(10)

Note that this value does not include losses due to the necessary impedance match-
ing networks, O
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Dual-gate
RE RF FET IF

input match | ol J_ = output
LO

Lo LO l_l l’ bypass

input match

FIGURE 7.12 A dual-gate FET mixer.

Other FET Mixers

There are several practical variations of mixer circuits that can be implemented using.
FETs. Figure 7.12 shows a single-ended mixer using a dual-gate FET, where the RF ang
LO inputs are applied to separate gates of the FET. This provides a high degree of RF
isolation, but generally an inferior noise figure relative to the transconductance mix
Figure 7.10.

Another configuration is shown in Figure 7.13, using two FETs in a differential amplifier
configuration, The balun (balanced-to-unbalanced) networks on the LO and IF ports provide
a transition between a two-wire line that is balanced with respect to ground and a si
line that is unbalanced relative to ground. Baluns may be implemented with center-tapped
transformers, or with 180° hybrid junctions.

The differential mixer operates as an alternating switch, with the LO turning the top two.
FETs on and off on alternate cycles of the LO. These FETs are biased slightly above pi
off, so each FET will be conducting for slightly more than half of each LO cycle. Thus,
of the upper FETs is always conducting, and the lower FET will remain in saturation,
RF and LO ports should each be impedance matched. The IF output circuit must provideq
return path to ground for the LO signal. '

An extension of the differential FET mixer is the Gilbert cell mixer shown
Figure 7.14. This mixer uses two differential FET mixer stages to form a double bal
mixer. This circuit achieves high RF-LO isolation and a high dynamic range. Italsoc
all even-order intermodulation products. This circuit is very popular for wireless integ
cireuits.

IF

|_’_ output
IF
Balun
LO LO - |
input Balun
RF
input

FIGURE 7.13 A dilferential FET mixer.
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1F
output
IF
Balun

1

LO
Balun

LO
input

[

RF
Balun

RF
input

FIGURE 7.14 A Gilbert cell mixer.

OTHER MIXER CIRCUITS

The single-ended diode and FET mixers discussed above provide frequency conversion,
but often have poor RF input matching and RF-LO isolation. This reduces the performance of
wireless systems, but fortunately it is possible to improve these characteristics by combining
two or more single-ended mixers with hybrid junctions.

Balanced Mixers

RF input matching and RF-LO isolation can be improved through the use of a bal-
anced mixer, which consists of two single-ended mixers combined with a hybrid junction.
Figure 7.15 shows the basic configuration, with either a 90° hybrid (Figure 7.15a), or a
180° hybrid (Figure 7.15b). As we will see, a balanced mixer using a 90° hybrid junc-
tion will ideally lead to a perfect input match at the RF port over a wide frequency
range, while the use of a 180° hybrid will ideally lead to perfect RF-LO isolation over
a wide frequency range. In addition, both mixers will reject all even-order intermodulation
products.

Microwave quadrature or ring hybrids [1] can be used to implement balanced mixers,
but at lower frequencies a center-tapped transformer can be used. As shown in Figure 7.16,
the secondary of the transformer provides outputs with a 180" phase shift to the two mixer
diodes. The LO signal is applied to the center tap of the secondary.

The double-balanced mixer of Figure 7.17 uses two hybrid junctions or transformers,
and provides good isolation between all three ports, as well as rejection of all even harmonics
of the RF and LO signals. This leads to very good conversion loss, but less than ideal input
matching at the RF port. The double-balanced mixer also provides a higher third-order
intercept point than either a single-ended mixer or a balanced mixer.
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FIGURE 7.15 Balanced mixer circuits. (a) Using a 90" hybrid. (b) Using a 180" hybrid.

fp‘imﬁ H

FIGURE 7.16 Balanced mixer using a hybrid transformer.
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FIGURE 7.17 Double-balanced mixer circuit,
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The following table summarizes the characteristics of several types of mixers.

Number of RF Input RF-LO Conversion Third-Order
Mixer Type Diodes Match [solation Loss Intercept
Single-ended 1 Poor Fair Good Fair
Balanced (907) 2 Good Poor Good Fair
Balanced (180") 2 Fair Excellent Good Fair
Double-balanced 4 Poor Excellent Excellent Excellent
Image reject 2or4 Good Good Good Good

Small-Signal Analysis of the Balanced Mixer

We can analyze the performance of a balanced mixer using the small-signal approach
that was used in Section 7.2. Here we will concentrate on the balanced mixer with a 90”
hybrid, shown in Figure 7.15a, and leave the 180° hybrid case as a problem.

As usual, let the RF and LO voltages be defined as

VRE(r) = Vrp cos wpet, (7.55)
and
vrolt) = Vipcoswof. (7.56)

The scattering matrix for the 907 hybrid junction is [1]

0 j 10
~1]j 001 -
01 j 0

where the ports are numbered as shown in Figure 7.15a. Then the total RF and LO voltages
applied to the two diodes can be written as

| i )
vy(t) = —|[ Vrr cos(wgpt —907) + Vo cos(wrof — 1807)]

V2

1
= —|Vgpsinwppt — Vipcoswypt] (7.58a)

W

1 .
valf) = —|[ Vg cos(wppt — 1807) + Vi cos(wppt — 907)]

V2

1 .
= —[—Vrp cos wppt + Viosinwof] (7.58b)

V2

Using only the quadratic term from the small-signal diode approximation of (7.20) gives
the diode currents as

i) = Kv? = g[‘/ﬁg sin? wgpt — 2 Ve Vio sin wgp cos @ of + V& cos” oot |
i (7.59a)
ia(t) = —Kvn_} = %[V,%I_ cos” wrpt — 2VapVip cos wgp sin wiof + VE‘O sin’ fui_of]
(7.59b)
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where the negative sign on i» accounts for the reversed diode polarity. and K is a constant
for the quadratic term of the diode response. Adding these two currents at the input to the
low-pass filter gives

—K
[ty +ixt) = -2—[1/,%1_- cos 2wpp! + 2VreVio Sin wpl — VEO cos 2wwr].

where the usual trigonometric identities have been used, and wp = wrr — wLo is the I[F
frequency. Note that the DC components of the diode currents cancel upon combining.
After low-pass filtering, the IF output is

() = — K Vg Vio sin wgt, (7.60)

as desired.

We can also calculate the input match at the RF port, and the coupling between the RF
and LO ports. If we assume the diodes are matched, and each exhibits a voltage reflection
coefficient I' at the RF frequency, then the phasor expression for the reflected RF voltages.
at the diodes will be

—JjT Vre
Ve, =TV, = ~7 (7.61a)
and
—TI" Vg .
Vi, =TV, = (7.61h)
T2 2 \/j 'I
These reflected voltages appear at ports 2 and 3 of the hybrid, respectively, and combine (o
form the following outputs at the RF and LO ports:
=iV 'V I 1 .
oL VO SO o / SIS o * SV 7.
¢ 72 7 1 Ve + 51 Vre (7.62a)
—Vr, ‘/[ I 1
VI-T'O - ! JFVRI- 4 — _,’FVRF — ,'FVR'F (762]}
[ \/" \/‘ 2 2 j

Thus we see that the phase characteristics of the 90 hybrid lead to perfect cancellation of
reflections at the RF port. The isolation between the RF and LO ports, however, is dependent
on the matching of the diodes, which may be difficult to maintain over areasonable frequency
range.

Image Reject Mixer

We have already discussed the fact that two distinct RF input signals at frequencies
wrr = w10 £ o will down-convert to the same IF frequency when mixed with @y ¢. These
two frequencies are the upper and lower sidebands of a double-sideband signal. The desired
response can be arbitrarily selected as either the LSB (w10 — @) or the USB (w10 + wp),
assuming a positive IF frequency. The image reject mixer, shown in Figure 7.18, can be
used to isolate these two responses into separate output signals. The same circuit can alsy
be used for up-conversion, in which case it is usually called a single-sideband modulator,
In this case, the IF input signal is delivered to either the LSB or the USB port of the [F
hybrid, and the associated single sideband signal is produced at the RF port of the mixer.

We can analyze the image reject mixer using the small-signal approximation. Let the
RF input signal be expressed as

vre(t) = Viy cos(wro + @r)t + Vi cos(wrg — @), (7.63)
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FIGURE 7.18 Circuit for an image reject mixer.

where Vi and V; represent the amplitudes of the upper and lower sidebands, respectively.
Using the S-matrix given in (7.57) for the 90° hybrid gives the RF voltages at the diodes as

vult) = [V cos{wrof + wipl — 907) + V cos(wof — @t — 90°)]

|
V2
1 ; . .
= _QWU sin(wro + o)t + Vysin(wro — or)t] (7.64a)
1
vg(t) = \/_’EWU cos{wrot + wpt — 1807y 4 Vi coslwrof — wipt — 180':)]
—1
= E [Vir coslewro + wp)t + Vi cos(wro — wip)t] (7.64b)

After mixing with the LO signal given in (7.56) and low-pass filtering, the IF inputs to the
IF hybrid are

KW .

viR(t) = 9—\/—%}“{"’0 — Vi)sinwpt, (7.65a)
—KV _

vf;(r) = 2\/%“0("/’5; + Vi) coswt, (7.65h)

where K is the mixer constant for the squared term of the diode response. The phasor
representation of the IF signals of (7.65) is

—jiKVia _
Vig = —W(Vu - Vi), (7.66a)
—KVip, .
B
Vig = eV (Viy + Vi). (7.66b)

Combining these voltages in the 1F hybrid gives the following outputs:

}’l_; B _YJE _ KVieVi

Vi = B 7.67
| J Nl > (LSB) ( a)
va vE  jKVioVy _
W=——0E _ j I (USB) (7.67b)
2 2

which we see are the separate sidebands of the downconverted input signal of (7.63). These
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outputs can be expressed in time-domain form as

KVioV,

vi(f) = —%cos il (7.684)
—KVipV

Vo) = —2""—”5111%:. (7.68b).

which clearly shows the presence of a 90° phase shift between the two sidebands. Alsg,
note that the image rejection mixer does not incur any additional losses beyond the usual
conversion losses of the single rejection mixer.

A practical difficulty with image rejection mixers is in fabricating a good hybrid at the
relatively low IF frequency. Losses, and hence noise figure, are also usually greater thay
for a simpler mixer. )
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PROBLEMS

7.1

7.2

7.3

7.4

A double-sideband signal of the form vpp(t) = Vrglcos(w o — @t + coslew o + @] is applied
to a mixer with an LO voltage given by (7.1). Derive the output of the mixer after low-pass filtering,
An RF input signal at 600 MHz is down-converted in a mixer to an IF [requency of 80 MHz, What
are the two possible LO frequencies. and the corresponding image frequencies?

Consider a diode mixer with a conversation loss of 5 dB and a noise figure of 4 dB. and a FET m
with conversion gain of 3 dB and a noise figure of 8 dB. If each of these mixers is followed by an |l
amplifier having a gain of 30 dB and a noise figure F, as shown below, calculate and plot the overl
noise figure for both amplifier-mixer configurations for £y = 0 to 10 dB.

Diode Amp FET Amp
mixer o = “/\. mixer

Le=5dB G =30dB Ge=3dB  G=30dB
Fy=4dB g =0—10dB Fy=8dB g =0-10dB

Let Tgsp be the equivalent noise temperature of a mixer receiving a SSB signal. and Tiygs be the.
temperature when it receives a DSB signal. Compute the output noise powers in cach case, and shoy.
that Tssp = 27psp. and that therefore Fygg = 2Fpgy. Assume that the conversion gains for the signil
and its image are identical.
If the noise power N; = kTB is applied at the RF input port of a mixer having noise figure F (DS},
and conversion loss L., what is the available output noise power at the IF port? Assume the mixerjs
at a physical temperature T. |
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7.7
7.8
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7.10

7.11

7.12

Problems 249

A diode has an I-V characterisitic given by i(t) = [,[¢*™® —1]. Let v(r) = 0.01cosa;t +
0.01 cos wat, and expand i(t) in a power series in v, retaining only the v, v, v* terms. Find the
magnitudes of each frequency term.

Carry out the details of multiplying (7.32) by (7.33) to obtain the set of equations in (7.34).

Derive the results in (7.35) and (7.36) for the short-circuit current and open-circuit voltage at the IF
port of the large-signal mixer model.

Derive the Fourier series of (7.46) for the square-wave conductance waveform shown in Figure 7.7.

Analyze a balanced mixer using a 180" hybrid junction, Find the output IF current, and the input
reflections at the RF and LO ports. Show that this mixer suppresses even harmonics of the LO.
Assume that the RF signal is applied to the sum port of the hybrid. and that the LO signal is applied
to the difference port.

For an image rejection mixer, let the RF hybrid have a dissipative insertion loss of Ly, and the IF
hybrid have a dissipative insertion loss of L,. If the component single-ended mixers each have a
conversion loss L. and noise figure F, derive expressions for the overall conversion loss and noise
figure of the image rejection mixer,

Find the IF output power of the double-sideband signal of (7.63) after it has been down converted
using an ideal single-ended mixer. Ignoring dissipative losses, show that this power is the same as the
total output power of the signals of (7.68) for the image reject mixer.
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Transistor Oscillators and
Frequency Synthesizers

Oscillators and frequency synthesizers are key components in wireless transmitters and re-
ceivers, providing precisely controlled sources for frequency conversion and carrier generation.
Simple transistor oscillators usually lack the frequency stability and low-noise performance
required for modern wireless systems, so crystal controlled oscillators are often used to provide
accurate frequency references. Frequency synthesis methods can then be used to precisely derive
higher frequencies from a crystal-controlled source, and allow the generation of the closely-
spaced local oscillator frequencies required for multichannel wireless transceivers. Phase-locked
loops are often used for this purpose.

Important considerations for oscillators and frequency synthesizers used in wireless systems.
include the following:

e Tuning range (specified in MHz/V for voltage tuned oscillators)

e Frequency stability (specified in PPM/°C)

e AM and FM (phase) noise (specified in dBc/Hz below carrier, offset from carrier)
e Harmonics (specified in dBc below carrier)

Typical frequency stability requirements for wireless systems range from 2 PPM/"C 1)
0.5 PPM/°C, while phase noise requirements typically range from —80 dBc/Hz to — 110 dBc/Hz
at a 10 kHz offset from the carrier.

We begin with a general analysis of radio frequency transistor oscillator design, which in-
cludes the well-known Hartley and Colpitts oscillators, as well as crystal-controlled oscillators
and voltage-controlled oscillators. Next we consider oscillators for use at microwave frequen-
cies, which differ from their lower frequency counterparts primarily due to different transistor
characteristics and the ability to make practical use of negative-resistance devices and high-0
microwave components such as transmission line and dielectric resonators. Then we consider
analog and digital methods of frequency synthesis, and focus on the very important phase-locked
loop circuit.

250
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RADIO FREQUENCY OSCILLATORS

In the most general sense, an oscillator is a nonlinear circuit that converts DC power to an
AC waveform. Most oscillators used in wireless systems provide sinusoidal outputs, thereby
minimizing undesired harmonics and noise sidebands. The basic conceptual operation of a
sinusoidal oscillator can be described with the linear feedback circuit shown in Figure 8.1.
An amplifier with voltage gain A has an output voltage V,. This voltage passes through a
feedback network with a frequency dependent transfer function H (w), and is added to the
input V; of the circuit. Thus the output voltage can be expressed as

V,(w) = AVi(w) + H(w)AV,(w), (8.1)

which can be solved to yield the output voltage in terms of the input voltage as

l”u{w) = I——AA]'I((_U)VI (). (83)
If the denominator of (8.2) becomes zero at a particular frequency, it is possible to achieve a
nonzero output voltage for a zero input voltage. thus forming an oscillator. This is known as
the Nyquist criterion, or the Barkhausen criterion. In contrast to the design of an amplifier,
where we design to achieve maximum stability, oscillator design depends on an unstable
circuit,
The oscillator circuit of Figure 8.1 is useful conceptually, but provides little helpful
information for the design of practical transistor oscillators. Thus we consider next a general
analysis of transistor oscillator circuits.

General Analysis

There are a large number of possible RF oscillator circuits using bipolar or field-effect
transistors in either common emitter/source, base/gate, or collector/drain configurations.
Various types of feedback networks lead to the well-known Hartley, Colpitts, Clapp, and
Pierce oscillator circuits [1]1-[3]. All of these variations can be represented by the general
oscillator circuit shown in Figure 8.2.

The equivalent circuit on the right-hand side of Figure 8.2 is used to model either
a bipolar or a field-effect transistor. As discussed in Chapter 6, we have assumed here a
unilateral transistor, which is usually a good approximation in practice. We can simplify
the analysis by assuming real input and output admittances of the transistor, defined as G,
and G, respectively, with a transistor transconductance g,,. The feedback network on the
left side of the circuit is formed from three admittances in a bridged-T configuration. These
components are usually reactive elements (capacitors or inductors) in order to provide a
frequency selective transfer function with high Q. A common emitter/source configuration
can be obtained by setting V5 =0, while common base/gate or common collector/drain
configurations can be modeled by setting either V| = 0 or V4 =0, respectively. As shown, the

V,i‘w) V(}(fu}‘_

|
A
|

Hiw)

r

FIGURE 8.1  Block diagram of a sinusoidal oscillator using an amplifier with a frequency-

dependent feedback path.
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L =)
B i

~
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FIGURE 8.2  General circuit for a transistor oscillator. The transistor may be either a bipolar

junction transistor or a field effect transistor. This circuit can used for comnion
emitter/source, base/gate, or collector/drain configurations by grounding either V3,
Vi, or V4, respectively. Feedback is provided by connecting node Vs to V.

circuit of Figure 8.2 does not include a feedback path—this can be achieved by connecting
node V3 to node Vi. "

Writing Kirchoff’s law for the four voltage nodes of the circuit of Figure 8.2 gives the
following matrix equation:

Y1 + Y3+ Gy) -(Y1 +Gj) £ 0 v
—(¥Y) + Gi + gm) Y+ Y2+ Gi +Gy+ gw) =¥ -G, Va =1
-1 —Y; (¥Ya+Y3) 0 Vg_ i
Eni —(G, + &m) 0 Go V4

(83)

Recall from circuit analysis that if the i th node of the circuit is grounded, so that V, =[|;

the matrix of (8.3) will be modified by eliminating the ith row and column, reducing the
order of the matrix by one. Additionally, if two nodes are connected together, the matrix is
modified by adding the corresponding rows and columns.

Oscillators Using a Common Emitter BJT

As a specific example, consider an oscillator using a bipolar junction transistor ing
common emitter configuration. In this case we have V, = 0, with feedback provided from the
collector, so that V3 = V4. In addition, the output admittance of the transistor is negligible,
0 we set G, = (). These conditions serve to reduce the matrix of (8.3) to the following:

Y, + Y3+ G;) —Y; . Vi —0. 84
(gm —13) (Ya+Yy ||V

where V = V3 = Vj. If the circuit is to operate as an oscillator, then (8.4) must be satisfied for
nonzero values of V| and V, so the determinant of the matrix must be zero. If the feedb
network consists only of lossless capacitors and inductors. then Yy, Y5, and Y3 must
imaginary, sowelet ¥, = By, Y> = jB>,and Y5 = jB3. Also, recall that the transcondu
g and transistor input conductance are G; are real. Then the determinant of (8.4) simpli
1o

G; + j(B, + B;) — /B3

&n— JB3 J(B2+ B3) =0 (8‘
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Separately equating the real and imaginary parts of the determinant to zero gives two
equations:

1 1 |
—t — 4 — =0 8.6
B, + B -+ B (8.6a)
and
I g"] 1
— 1+Z=)|—=0. 8.6b
B; = ( g Gr') B> e

If we convert susceptances to reactances, and let Xy = 1 /By, Xo = 1/Bs,and X5 =1/Bs,
then (8.6a) can be written as
X i+ Xs+ X3=0. (8.7a)
Using (8.6a) to eliminate Bs from (8.6b) reduces that equation to the following:

X| — g!?l‘
G

Xs. (8.7b)

L

Since g, and G; are positive, (8.7b) implies that X; and X, have the same sign, and
therefore are either both capacitors, or both inductors. Equation (8.7a) then shows that X
must be opposite in sign from X and X, and therefore the opposite type of component.
This conclusion leads to two of the most commonly used oscillator circuits.

If X, and X, are capacitors and X3 is an inductor, we have a Colpitts oscillator, Let
X, =—1/woCy, X3 =—1/wuC>, and X3 =wLj. Then (8.7a) becomes

=1/ 1 I
—(—+—) +wyls =0,

wg \C1  C2
which can be solved for the frequency of oscillation, wy. as
1 /Cy + C;)
= |—| ——]. 8.8
wy I ( G, . (8.8)

Using these same substitutions in (8.7b) gives a necessary condition for oscillation of the
Colpitts circuit as

G Eni
C, -G, (8.9)
The resulting common-emitter Colpitts oscillator circuit is shown in Figure 8.3a.
ANV, oV,
G L,
C.
3 Ve Ve
T A L A
vV
(a) (b)

FIGURE 8.3  Transistor oscillator circuits using a common-emitter BIT. (a) Colpitts oscillator. (b)

Hartley oscillator.
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Alternatively, if we choose X and X5 to be inductors, and X to be a capacitor, then we have
a Hartley oscillator, Let X| =woL, Xa =wyL2, and X3 = —1/@yC5. Then (8.7a) becomes

|
=10,
woCa

wy(Ly + La) —

which can be solved for wy to give

/ i )
P P — 8.101
L 7 T (18

These same substitutions used in (8.7b) gives a necessary condition for oscillation of the
Hartley circuit as

Lt
Ly G,

The resulting common-emitter Hartley oscillator circuit is shown in Figure 8.3b.

(8.11).

Oscillators Using a Common Gate FET

Next consider an oscillator using an FET in a common gate configuration. In this case
V| =0, and again V3 = V; provides the feedback path. For an FET the input admittance can
be neglected, so we set G; = 0. Then the matrix of (8.3) reduces to
Y +Ys+gn+Gs) —(Y2+ G,) V2 -0 (8 12)'
—(Go+gm + Y2) Ya+Ya+Gy)| |V , b

where V = V3 = V.
Again we assume the feedback network is composed of lossless reactive elements, so
that ¥}, Y5, and Y3 can be replaced with their susceptances. Setting the determinant of (8.12).
to zero then gives

(8 + Go) + j(B + Ba) —G,— jB2

=10. 8.13)
—(G'fl +gm)—j82 Gri"'j{B.’. +B3) : 13}

Equating the real and imaginary parts to zero gives two equations:
1 1 |

and
Go Em Ga 8
— e o —— ==, 14b)
By B By G

As before, let X, X, and X3 be the reciprocals of the corresponding susceptances. Then
(8.14a) can be rewritten as

X1+Xo+X3=0. (8.15a]
Using (8.14a) to eliminate B3 from (8.14b) reduces that equation to
X Em
— = . 8 |
X] Gu ( 15]3)

Since g,y and G, are positive, (8.15b) shows that X and X, must have the same sign,
while (8.15a) indicates that X3 must have the opposite sign. If X; and X are chosen to e
negative, then these elements will be capacitive and X3 will be inductive, This correspon‘_dﬂ
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to a Colpitts oscillator. Since (8.15a) is identical to (8.7a), its solution gives the result for
the resonant frequency for the common gate Colpitts oscillator as

1 (Ci+Ca |
= |—| ——|, 8.
0 f—s( .G ) (@16)

which is identical to the result obtained in (8.8) for the common emitter Colpitts oscillator.
This is because the resonant frequency is determined by the feedback network, which is
identical in both cases. The further condition for oscillation given by (8.15b) reduces to

Cy Sm )
— = 8.17
C'Z Gﬂ ! )
If we choose X and X5 to be positive (inductive), then X5 will be capacitive, and we have
a Hartley oscillator. The resonant frequency of the common gate Hartley oscillator is given

by
: (8.18)
W=, ————, ;
E Csy(Ly + L2)

which is identical to the result of (8.10) for the common emitter Hartley oscillator. Equa-
tion (8.15b) reduces to

Ly _ 8gm

— : Wl
L. G, (8.19)

The circuits for common gate Colpitts and Hartley oscillators are similar to the circuits
shown in Figure 8.3, if the BJT is replaced with an FET device.

Practical Considerations

It must be emphasized that the above analysis is based on very idealized assumptions,
and in practice successful oscillator design requires attention to factors such as the reactances
associated with the input and output transistor ports, the variation of transistor properties
with temperature, transistor bias and decoupling circuitry, and the effect of inductor losses.
For these purposes computer aided design software can be very helpful [3].

The above analysis can be extended to account for more realistic feedback network in-
ductors having series resistance, which invariably occurs in practice. For example. consider
the case of a common emitter BIT Colpitts oscillator, with the impedance of the inductor
givenby Z3; =1/¥3= R + jwL;. Substituting into (8.4) and setting the real and imaginary
parts of the determinant to zero gives the following result for resonant frequency:

1 1 1 GiR 1 1 1
S Ay r L Oy BT oY, 8.20
“ [Ls(cl e g ) \/La(c;+cz) (520

This equation is similar to the result of (8.8) for the lossless inductor. except that C|is
defined as

C .
Cl=——7"—. 8.21
' 14 RG L
The corresponding condition for oscillation is
R 1 +g./Gi L
R _1+8&n/Gi_Ls (8.22)

G; wﬁC|C3 C1
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This result sets the maximum value of the series resistance R; the left side of (8.22) should
generally be chosen to be less than the right hand side to ensure oscillation.

) EXAMPLE 8.1 COLPITTS OSCILLATOR DESIGN
al))))

Design a 50 MHz Colpitts oscillator using a transistor in a common emitter con-
figuration with 8 = g,,/G; = 30, and a transistor input resistance of R; = 1/G; =
1200 £2. Use an inductor with L3 =0.10 peH, with a Q of 100. What is the minimum
Q of the inductor for which oscillation will be sustained?

Solution

From (8.20) the series combination of C| and C; is found to be
ce 1 1

Ci+Cy  wiLs  (2m)*(50 x 106)%(0.1 x 10-9)

This value can be obtained in several ways, but here we will choose C} =C, =
200 pF.

From circuit analysis [4] we know that the Q of an inductor is related to its
series resistance by 0 =wl /R, so the series resistance of the 0.1 pH inductor is

g — @oks _ (2m)(50 x 10°)(0.1 x 10°°)
Q0 100
Then (8.21) gives C; as

=031Q

, 0.31

which we see is essentially unchanged from the value found by neglecting the
inductor loss. Using (8.22) with the above values gives

R 1+p L;
G, w3 C1Cy @
1430 0.1 x 1076
(27)2(50 x 109)2(200 x 10-12)2 ~ 200 x 10-12
372. < 7852. — 500. = 7352,

(0.31)(1200) <

which indicates that the condition for oscillation will be satisfied. This condition
can be used to find the minimum inductor Q by first solving for the maximum
value of series resistance R:

1 ( 1+ 8 Lg)_7352.

2 i N e e 13
Ri\w}CiC; C 1200

Riax =

So the minimum Q is

wols  (2m)(50 x 109)(0.1 x 107°) .

Cnin = — 6.13

5.1 O

Crystal Oscillators

As we have seen from the above analysis, the resonant frequency of an oscillator is
determined from the condition that a 180" phase shift occurs between the input and output
of the transistor. If the resonant feedback circuit has a high Q. so that there is a very rapid
change in the phase shift with frequency. the oscillator will have good frequency stability,
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FIGURE 8.4  (a) Equivalent circuit of a erystal. (b) Input reactance of a erystal resonator.

Quartz crystals are useful for this purpose, especially at frequencies below a few hundred
MHz. where LC resonators seldom have Qs greater than a few hundred. Quartz crystals
may have unloaded Qs as high as 100,000 and temperature drift less than 0.001%/C".
Crystal-controlled oscillators therefore find extensive use as stable frequency sources in
wireless systems. Further stability can be obtained by controlling the temperature of the
quartz crystal.

A quartz crystal resonator consists of a small slab of quartz mounted between two
metallic plates. Mechanical oscillations can be excited in the crystal through the piezoelec-
tric effect. The equivalent circuit of a quartz crystal near its lowest resonant mode is shown
in Figure 8.4a. This circuit has series and parallel resonant frequencies, a; and w,, given by

1
W, = —, (8.23a)
A LC
1
Wp = —————, (8.23b)
)
Co+C,

The reactance of the circuit of Figure 8.4a is plotted in Figure 8.4b, where we see that the
reactance is inductive in the frequency range between the series and parallel resonances.
This is the usual operating point of the crystal, so that the crystal may be used in place of
the inductor in a Colpitts or Pierce oscillator. A typical crystal oscillator circuit is shown in
Figure 8.5.

RF choke  +y
— A~ Q{‘

la ||
= RF
== h e 55
Crystal <[ FEa
. TCZ
e O Output

1ur

RF
bypass

FIGURE 8.5  Pierce crystal oscillator circuit.
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FIGURE 8.6 A varactor-tuned voltage-controlled transistor oscillator circuit.

8.2

Voltage-Controlled Oscillators

In many wireless applications it is necessary to vary the frequency of the local ps-
cillator, This requirement occurs in AM and FM broadcast receivers, and in multichannel
telecommunications systems such as cellular telephones and wireless local area networks.
Because the resonant frequency of an oscillator is controlled by an LC network, changing
the frequency of an oscillator requires changing either the inductance or capacitance, and it
is usually preferred to do this electronically. While it is possible to use tunable ferromagnetic
inductors for this purpose, it is usually easier and cheaper to use voltage-controlled capaci-
tors, such as varactors. A varactor is a diode whose junction capacitance may be controlled
by changing the DC reverse bias applied to the diode. The resulting configuration is called
a veltage-controlled oscillator (VCO). A typical varactor may have a junction capacitance
that varies from 5 pF to 30 pF as the bias voltage varies from 20 to 1 V. Since resonant -
frequency varies as 1/+/C, a linear variation of frequency with tuning voltage, v, requires
that the junction capacitance vary as 1/v?; hyperabrupt junction varactors have character-
istics that approximate this behavior fairly closely.

Varactors can be used in a variety of configurations to provide voltage tuning of an
oscillator. Generally a varactor is used in either series or parallel with a capacitor in the
feedback network to provide a fine-tuning range about the quiescent resonant frequency. In-
addition, DC blocking capacitors and/or RF chokes must be used to provide a reverse bias
voltage without detuning or shorting the RF circuit. A typical varactor-tuned VCO circuitis
shown in Figure 8.6. This design uses a varactor in shunt across the capacitors of a Colpitts
oscillator: this type of circuit is known as a Clapp oscillator.

MICROWAVE OSCILLATORS

Microwave circuit design often involves qualitative differences from the techniques
used at lower RF frequencies. because of differences in transistor characteristics, circuil
layout methods, and test equipment. At microwave frequencies S parameter methods are the
preferred choice, primarily because it is very difficult to measure voltages or currents directly
at these frequencies, while incident and reflected signals can be measured reliably and
accurately. In this section we discuss some of the basic principles of microwave oscillatop
design, including negative resistance oscillators, FET oscillators, and dielectric resonator
oscillators, This material is drawn largely from [4]. '
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FIGURE 8.7  Circuit for a one-port negative-resistance oscillator.

Negative Resistance Oscillators

Here we discuss some of the basic principles of the operation and design of one-port
negative resistance oscillators: much of this material will also apply to two-port (transistor)
oscillators. One-port negative resistance oscillators include circuits that use IMPATT or
Gunn diodes, where the active device can be biased to produce an impedance having a
negative real part,

Figure 8.7 shows a canonical RF circuit for a one-port negative resistance oscil-
lator, where Zi, = Rin + jXin is the input impedance of the active device. In general.
this impedance is current (or voltage) dependent, as well as frequency dependent, which
we can indicate by writing Zi,(1. jw) = Rin(I, jow) + jXin(I, jw). The device is termi-
nated with a passive load impedance, Z; = Ry + j X1. Applying Kirchoff’s voltage law
gives

(Z + Zin)l = 0. (8.24)

If oscillation is occurring, so that the RF current / is nonzero, then the following conditions
must be satisfied:

RL + Rin = 0: (8.253)
X+ Xn=0. (8.25b)

(These conditions are analogous to setting the real and imaginary parts of the determinantal
equations of (8.5) or (8.13) to zero in the case of the transistor oscillator circuits considered
in Section 8.1.)

Since the load is passive, Ry >0 and (8.25a) indicates that Ry, < 0. Thus, while a
positive resistance implies energy dissipation, anegative resistance implies an energy source.
The condition of (8.25b) controls the frequency of oscillation. The requirement of (8.24).
that Z; = —Z;, for steady-state oscillation, implies that the reflection coefficients I'y and
Iy, are related as
P, = Zi—2Zo _ —Zin—2y _Znt ?0 - _l_ (8.26)

Zi+2Zy —Zn+Zy Zin—Zo Tin
The process of oscillation depends on the nonlinear behavior of Zj,, as follows. Initially, it
is necessary for the overall circuit to be unstable at a certain frequency, that is, Ry,(1, jw) +
R, < 0. Then any transient excitation, such as noise or the turning on of the power supply,
will cause an oscillation to build up at the frequency, w. As I increases, Riy(/. jw) must
become less negative until the current /p is reached such that Ry, (ly, jog) + Ry =0, and
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Xinllo, jwo) + X (jewg) = 0. Then the oscillator will be running in a stable state. The
final frequency, wy, generally differs from the start-up frequency because Xj, is current
dependent, so that X;,(/, jw) # Xi,(Jy, Jwg).

Thus we see that the conditions of (8.25) are not enough to guarantee a stable state of
oscillation. In particular, stability requires that any perturbation in current or frequency will
be damped out, allowing the oscillator to return to its original state. This condition can be:
quantified by considering the effect of a small change, 87, in the current and a small change,
88, in the complex frequency s = @ + jw. If we let Zp(1, 5) = Ziy(1, 5) + Z1(s), then we
can write a Taylor series for Zy(/, s) about the operating point fy, @q as

dZr

aZy
al

Zy(,s) = Zy(ly, s) +
ds

85 -+

s doy

81 =0, (8.27)

s do

since Zy(I, s) must still equal zero if oscillation is occurring. In (8.27), 5o = jwy is the
complex frequency at thde original operating point. Now we use the fact that Z¢(/y, sy) =0,

and that Eﬁz ] —j%, to solve (8.27) for 8s = da + jdw:
. —dZy /31 —j(&ZT/af)(BZ;/an
(SS=(S€Y+ W= — = : - = 8. (8.28
| 1= 9z /05 |,y 10Zr /0] ’

Now if the transient caused by 87 and dw is to decay, we must have da < 0 when 87 > (),
Equation (8.28) then implies that

AZr dZ5
Im( Z2L251)
ol dw

or

dRy Xy 00Xy dRy
al dw dl dw

> 0. (8.29)

For a passive (series) load impedance, dR; /81 = 80X, /0] = IR, /dw =0, 50 (8.29) re-
duces to
IRy 8 A Xin d Ry
Zx Xy~
ol am E T~ e

(8.30)

As discussed above, we usually have dR;,/d/ > 0. So (8.30) can be satisfied if 3(X; +
Xin)/dw > 0, whichimplies that a high-Q circuit will result in maximum oscillator stability,
Cavity, crystal, and dielectric resonators are therefore often preferred over LC resonators
for practical oscillator design.

As in the case of RF transistor oscillator design, the above analysis is very idealized,
and does not consider all the factors that must often be considered in practice. These include
the selection of a device operating point, frequency pulling due to changes in the output
load impedance, large-signal effects, and noise characteristics. Such topics are left to more.
advanced texts [3]. '

A one-port oscillator uses a negative-resistance diode having I'y, = 1.25/40°, with
Zy =350 £, at its desired operating point, for f =6 GHz. Design a load matching
network for a 50 € load impedance.

) > EXAMPLE 8.2 NEGATIVE RESISTANCE OSCILLATOR DESIGN
N l))>>
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FIGURE 8.8 Load matching circuit for the one-port oscillator of Example 8.2.

Solution
From either a Smith chart, or by direct calculation, we find the input impedance as

Zn = —44+ j123 Q.
Then by (8.25) the load impedance must be
Z, =44—j123 Q.

A shunt stub and a series line section can be used to convert 50 §2 to Z;,, as shown
in the circuit of Figure 8.8. ®

Transistor Oscillators

In a transistor oscillator a negative resistance one-port network is effectively created by
terminating a potentially unstable transistor with an impedance designed to drive the device
in an unstable region. The circuit model is shown in Figure 8.9; output power can be tapped
from either side of the transistor. In the case of an amplifier, we prefer a device with a high
degree of stability—ideally, an unconditionally stable device. For an oscillator, however,
we require a device with a high degree of instability. Typically, common source Or common
gate FET configurations are used (or common emitter or common base in the case of bipolar
transistors), often with positive feedback to enhance the instability of the device. After the
transistor configuration is selected, the output stability circle can be drawn in the 'y plane,
and T selected to produce a large value of negative resistance at the input to the transistor.
Then the load impedance Z; can be chosen to match Z;,. Because such a design uses
the small-signal S parameters, and because Ri, will become less negative as the oscillator
power builds up, it is necessary to choose Ry so that Ry + R;, < 0. Otherwise, oscillation

Negative
| resistance
|
|
T
ncL-;::inrk - : T"““;"]‘““r Tcn:rllinan;{ng
(tuning) I! r [ T r networl
|
1 [ ]
|
rL r]“ l.—""‘ 1;?'
{zL:' (Ziy) (Zow) (Zy)

FIGURE 8.9  Circuit for a two-port transistor oscillator.
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will cease when the increasing power increases Ry, to the point where R; + Ry, > 0.In
practice, a value of

—R; .
R, =—— (8.31a)
3
is typically used. The reactive part of Z; is chosen to resonate the circuit at the operating
frequency
Xp=—Xi. (8.31b)

When oscillation occurs between the load network and the transistor, oscillation will si-
multaneously occur at the output port, which we can show as follows. For steady-state

oscillation at the input port, we must have I'; [y, = 1. as derived in (8.26). Then from (6,&]
(after replacing I'y with 'r) we have

1 MERETIE S — Al !

=Ty =S 1292l Sy T (8.32)

Ty H+1—Szzrrui—322f‘r'

where A = 811822 — 85,82 . Solving for I'y gives

I =8l

o
S» — Al

(8.33)

Then from (6.6b) (after replacing I'y with 'z ) we have that
SipSaul’y 8§ — Al
1—-8yTp ~ 1=8yIy’
which shows that 'y Iy = 1, and hence Zy = —Z,. Thus, the condition for oscillation

of the terminating network is satisfied. Note that the appropriate § parameters (o use in the
above development are generally the large signal parameters of the transistor, if available,

Coue = 822 + (334)

) > EXAMPLE 8.3 TRANSISTOR OSCILLATOR DESIGN
o :)) >>

Design a transistor oscillator at 4 GHz using a GaAs FET in a common gate
configuration, with a 5 nH inductor in series with the gate to increase the instability.
Choose a terminating network to match a 50 §2 load, and an appropriate tuning
network.

The § parameters of the transistor in a common source configuration are, with
Zy=50Q: 85, =0.72/—1167, S3; =2.60.76°, 81, =0.03£57". §5, =0.73/ —54°,

Solution

The first step is to convert the common source § parameters to the § parameters
that apply to the transistor in a common gate configuration with a series inductor.
(See Figure 8.10a.) This is most easily done using a microwave CAD package.
The new § parameters are

81 =2.18¢£-35°,
S5 =2.75 (96",
Sip = 1.26/18°,
855 =10.52 /155°.

Note that Sj, is significantly larger than |S)[, which suggests that the configu-
ration of Figure 8.10a is more unstable than the common source configuration.
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FIGURE 8.10  Circuit design for the transistor oscillator of Example 8.3. (a) Oscillator circuit. (b)
Smith chart solution for finding I'y.

Calculating the output stability circle (I'y plane) parameters from (6.28) gives

_ (5 — ATSH)

Cr= = 1.08/33",
T ISP -1
S84
Ry = | 2| = 0.665.
85,12 — 1A
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Since S8}, = 2.18 > 1, the stable region is inside the stability circle, as shown in
the Smith chart of Figure 8.10b.

There is a large amount of freedom in our choice for 'y, but one objective is
to make I, ] large. Thus we try several values of I'y located on the opposite side
of the chart from the stability circle, and select 'y = 0.59/—104". Then we can
design a single-stub matching network to converta 50 Q loadto Z; = 20 — j35%,
as shown in Figure 8.10a.

For the given value of 'y, we calculate Ty, as

125 I'r

Ty = S;] + ] = qugr?‘

=3.96/-24",

or Zy, = —84 — j1.9 €2, Then, from (8.31), we find Z; as

—Rin s 5
Zr= 3 —jXin=28+19Q.

Using Ry, /3 should ensure enough instability for reliable startup of